{"title":"评估生成式人工智能在公开可用的结构化遗传数据集中识别癌症亚型的能力。","authors":"Ethan Hillis, Kriti Bhattarai, Zachary Abrams","doi":"10.3390/jpm14101022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genetic data play a crucial role in diagnosing and treating various diseases, reflecting a growing imperative to integrate these data into clinical care. However, significant barriers such as the structure of electronic health records (EHRs), insurance costs for genetic testing, and the interpretability of genetic results impede this integration.</p><p><strong>Methods: </strong>This paper explores solutions to these challenges by combining recent technological advances with informatics and data science, focusing on the diagnostic potential of artificial intelligence (AI) in cancer research. AI has historically been applied in medical research with limited success, but recent developments have led to the emergence of large language models (LLMs). These transformer-based generative AI models, trained on vast datasets, offer significant potential for genetic and genomic analyses. However, their effectiveness is constrained by their training on predominantly human-written text rather than comprehensive, structured genetic datasets.</p><p><strong>Results: </strong>This study reevaluates the capabilities of LLMs, specifically GPT models, in performing supervised prediction tasks using structured gene expression data. By comparing GPT models with traditional machine learning approaches, we assess their effectiveness in predicting cancer subtypes, demonstrating the potential of AI models to analyze real-world genetic data for generating real-world evidence.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"14 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating Generative AI's Ability to Identify Cancer Subtypes in Publicly Available Structured Genetic Datasets.\",\"authors\":\"Ethan Hillis, Kriti Bhattarai, Zachary Abrams\",\"doi\":\"10.3390/jpm14101022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genetic data play a crucial role in diagnosing and treating various diseases, reflecting a growing imperative to integrate these data into clinical care. However, significant barriers such as the structure of electronic health records (EHRs), insurance costs for genetic testing, and the interpretability of genetic results impede this integration.</p><p><strong>Methods: </strong>This paper explores solutions to these challenges by combining recent technological advances with informatics and data science, focusing on the diagnostic potential of artificial intelligence (AI) in cancer research. AI has historically been applied in medical research with limited success, but recent developments have led to the emergence of large language models (LLMs). These transformer-based generative AI models, trained on vast datasets, offer significant potential for genetic and genomic analyses. However, their effectiveness is constrained by their training on predominantly human-written text rather than comprehensive, structured genetic datasets.</p><p><strong>Results: </strong>This study reevaluates the capabilities of LLMs, specifically GPT models, in performing supervised prediction tasks using structured gene expression data. By comparing GPT models with traditional machine learning approaches, we assess their effectiveness in predicting cancer subtypes, demonstrating the potential of AI models to analyze real-world genetic data for generating real-world evidence.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm14101022\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm14101022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Evaluating Generative AI's Ability to Identify Cancer Subtypes in Publicly Available Structured Genetic Datasets.
Background: Genetic data play a crucial role in diagnosing and treating various diseases, reflecting a growing imperative to integrate these data into clinical care. However, significant barriers such as the structure of electronic health records (EHRs), insurance costs for genetic testing, and the interpretability of genetic results impede this integration.
Methods: This paper explores solutions to these challenges by combining recent technological advances with informatics and data science, focusing on the diagnostic potential of artificial intelligence (AI) in cancer research. AI has historically been applied in medical research with limited success, but recent developments have led to the emergence of large language models (LLMs). These transformer-based generative AI models, trained on vast datasets, offer significant potential for genetic and genomic analyses. However, their effectiveness is constrained by their training on predominantly human-written text rather than comprehensive, structured genetic datasets.
Results: This study reevaluates the capabilities of LLMs, specifically GPT models, in performing supervised prediction tasks using structured gene expression data. By comparing GPT models with traditional machine learning approaches, we assess their effectiveness in predicting cancer subtypes, demonstrating the potential of AI models to analyze real-world genetic data for generating real-world evidence.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.