Zhengtian Lyu, Gaoxiang Yuan, Yuying Zhang, Fengwenhui Zhang, Yan Liu, Yifan Li, Guang Li, Ying Wang, Ming Zhang, Yongfei Hu, Yuming Guo, Dan Liu
{"title":"Anaerostipes caccae CML199通过丁酸驱动的肠道-骨骼轴促进骨骼发育并抵消衰老引起的骨质流失:鸡模型。","authors":"Zhengtian Lyu, Gaoxiang Yuan, Yuying Zhang, Fengwenhui Zhang, Yan Liu, Yifan Li, Guang Li, Ying Wang, Ming Zhang, Yongfei Hu, Yuming Guo, Dan Liu","doi":"10.1186/s40168-024-01920-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota is a key regulator of bone metabolism. Investigating the relationship between the gut microbiota and bone remodeling has revealed new avenues for the treatment of bone-related disorders. Despite significant progress in understanding gut microbiota-bone interactions in mammals, research on avian species remains limited. Birds have unique bone anatomy and physiology to support egg-laying. However, whether and how the gut microbiota affects bone physiology in birds is still unknown. In this study, we utilized laying hens as a research model to analyze bone development patterns, elucidate the relationships between bone and the gut microbiota, and mine probiotics with osteomodulatory effects.</p><p><strong>Results: </strong>Aging led to a continuous increase in bone mineral density in the femur of laying hens. The continuous deposition of medullary bone in the bone marrow cavity of aged laying hens led to significant trabecular bone loss and weakened bone metabolism. The cecal microbial composition significantly shifted before and after sexual maturity, with some genera within the class Clostridia potentially linked to postnatal bone development in laying hens. Four bacterial strains associated with bone development, namely Blautia coccoides CML164, Fournierella sp002159185 CML151, Anaerostipes caccae CML199 (ANA), and Romboutsia lituseburensis CML137, were identified and assessed in chicks with low bacterial loads and chicken primary osteoblasts. Among these, ANA demonstrated the most significant promotion of bone formation both in vivo and in vitro, primarily attributed to butyrate in its fermentation products. A long-term feeding experiment of up to 72 weeks confirmed that ANA enhanced bone development during sexual maturity by improving the immune microenvironment of the bone marrow in laying hens. Dietary supplementation of ANA for 50 weeks prevented excessive medullary bone deposition and mitigated aging-induced trabecular bone loss.</p><p><strong>Conclusions: </strong>These findings highlight the beneficial effects of ANA on bone physiology, offering new perspectives for microbial-based interventions for bone-related disorders in both poultry and possibly extending to human health. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495078/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anaerostipes caccae CML199 enhances bone development and counteracts aging-induced bone loss through the butyrate-driven gut-bone axis: the chicken model.\",\"authors\":\"Zhengtian Lyu, Gaoxiang Yuan, Yuying Zhang, Fengwenhui Zhang, Yan Liu, Yifan Li, Guang Li, Ying Wang, Ming Zhang, Yongfei Hu, Yuming Guo, Dan Liu\",\"doi\":\"10.1186/s40168-024-01920-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The gut microbiota is a key regulator of bone metabolism. Investigating the relationship between the gut microbiota and bone remodeling has revealed new avenues for the treatment of bone-related disorders. Despite significant progress in understanding gut microbiota-bone interactions in mammals, research on avian species remains limited. Birds have unique bone anatomy and physiology to support egg-laying. However, whether and how the gut microbiota affects bone physiology in birds is still unknown. In this study, we utilized laying hens as a research model to analyze bone development patterns, elucidate the relationships between bone and the gut microbiota, and mine probiotics with osteomodulatory effects.</p><p><strong>Results: </strong>Aging led to a continuous increase in bone mineral density in the femur of laying hens. The continuous deposition of medullary bone in the bone marrow cavity of aged laying hens led to significant trabecular bone loss and weakened bone metabolism. The cecal microbial composition significantly shifted before and after sexual maturity, with some genera within the class Clostridia potentially linked to postnatal bone development in laying hens. Four bacterial strains associated with bone development, namely Blautia coccoides CML164, Fournierella sp002159185 CML151, Anaerostipes caccae CML199 (ANA), and Romboutsia lituseburensis CML137, were identified and assessed in chicks with low bacterial loads and chicken primary osteoblasts. Among these, ANA demonstrated the most significant promotion of bone formation both in vivo and in vitro, primarily attributed to butyrate in its fermentation products. A long-term feeding experiment of up to 72 weeks confirmed that ANA enhanced bone development during sexual maturity by improving the immune microenvironment of the bone marrow in laying hens. Dietary supplementation of ANA for 50 weeks prevented excessive medullary bone deposition and mitigated aging-induced trabecular bone loss.</p><p><strong>Conclusions: </strong>These findings highlight the beneficial effects of ANA on bone physiology, offering new perspectives for microbial-based interventions for bone-related disorders in both poultry and possibly extending to human health. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01920-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01920-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:肠道微生物群是骨代谢的关键调节因子。研究肠道微生物群与骨骼重塑之间的关系为治疗骨骼相关疾病提供了新途径。尽管在了解哺乳动物肠道微生物群与骨骼相互作用方面取得了重大进展,但对鸟类物种的研究仍然有限。鸟类具有独特的骨骼解剖和生理结构,以支持产蛋。然而,肠道微生物群是否以及如何影响鸟类的骨骼生理机能仍是未知数。在这项研究中,我们利用蛋鸡作为研究模型,分析骨骼发育模式,阐明骨骼与肠道微生物群之间的关系,并挖掘具有骨调节作用的益生菌:结果:衰老导致蛋鸡股骨中的骨矿物质密度持续增加。老龄蛋鸡骨髓腔中髓质骨的持续沉积导致骨小梁显著流失和骨代谢减弱。性成熟前后盲肠微生物组成发生了显著变化,梭菌属中的一些菌属可能与蛋鸡出生后的骨骼发育有关。在细菌负荷较低的雏鸡和鸡初级成骨细胞中鉴定并评估了与骨骼发育相关的四种细菌菌株,即Blautia coccoides CML164、Fournierella sp002159185 CML151、Anaerostipes caccae CML199(ANA)和Romboutsia lituseburensis CML137。其中,ANA 对体内和体外骨形成的促进作用最为显著,这主要归功于其发酵产物中的丁酸盐。一项长达 72 周的长期饲喂实验证实,ANA 通过改善蛋鸡骨髓的免疫微环境,促进了性成熟期间的骨骼发育。连续 50 周膳食补充 ANA 可防止髓质骨过度沉积,并减轻衰老引起的小梁骨质流失:这些发现强调了 ANA 对骨生理学的有益影响,为基于微生物的家禽骨相关疾病干预提供了新的视角,并可能扩展到人类健康。视频摘要。
Anaerostipes caccae CML199 enhances bone development and counteracts aging-induced bone loss through the butyrate-driven gut-bone axis: the chicken model.
Background: The gut microbiota is a key regulator of bone metabolism. Investigating the relationship between the gut microbiota and bone remodeling has revealed new avenues for the treatment of bone-related disorders. Despite significant progress in understanding gut microbiota-bone interactions in mammals, research on avian species remains limited. Birds have unique bone anatomy and physiology to support egg-laying. However, whether and how the gut microbiota affects bone physiology in birds is still unknown. In this study, we utilized laying hens as a research model to analyze bone development patterns, elucidate the relationships between bone and the gut microbiota, and mine probiotics with osteomodulatory effects.
Results: Aging led to a continuous increase in bone mineral density in the femur of laying hens. The continuous deposition of medullary bone in the bone marrow cavity of aged laying hens led to significant trabecular bone loss and weakened bone metabolism. The cecal microbial composition significantly shifted before and after sexual maturity, with some genera within the class Clostridia potentially linked to postnatal bone development in laying hens. Four bacterial strains associated with bone development, namely Blautia coccoides CML164, Fournierella sp002159185 CML151, Anaerostipes caccae CML199 (ANA), and Romboutsia lituseburensis CML137, were identified and assessed in chicks with low bacterial loads and chicken primary osteoblasts. Among these, ANA demonstrated the most significant promotion of bone formation both in vivo and in vitro, primarily attributed to butyrate in its fermentation products. A long-term feeding experiment of up to 72 weeks confirmed that ANA enhanced bone development during sexual maturity by improving the immune microenvironment of the bone marrow in laying hens. Dietary supplementation of ANA for 50 weeks prevented excessive medullary bone deposition and mitigated aging-induced trabecular bone loss.
Conclusions: These findings highlight the beneficial effects of ANA on bone physiology, offering new perspectives for microbial-based interventions for bone-related disorders in both poultry and possibly extending to human health. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.