{"title":"代谢组对不同温度胁迫下芒果(Mangifera indica L.)花粉萌发和花粉管生长的影响","authors":"Xinyu Liu, Lirong Zhou, Chengxun Du, Songbiao Wang, Hongjin Chen, Wentian Xu, Zhuanying Yang, Qingzhi Liang","doi":"10.3390/metabo14100543","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The dramatic temperature fluctuations spurred by global warming and the accompanying extreme weather events inhibit mango growth and threaten mango productivity. Particularly, mango flowering is highly sensitive to temperature changes. The mango fruit setting rate was significantly positively correlated with pollen activity, and pollen activity was regulated by different metabolites.</p><p><strong>Methods: </strong>In this study, the in vitro pollen of two mango varieties ('Renong No.1' and 'Jinhuang'), in which sensitivity to temperature differed significantly, were subjected to different temperature stresses (15 °C, 25 °C and 35 °C), and their metabolomics were analyzed.</p><p><strong>Results: </strong>The present results showed that 775 differential metabolites were screened by liquid chromatography-mass spectrometry and divided into 12 categories. The two varieties had significant differences in metabolite expression under different temperature stresses and the effect of low temperature on 'Renong No.1' mainly focused on amino acid metabolism, while the effect on 'Jinhuang' was mainly related to glycolysis. However, under the 35 °C temperature stress, 'Renong No.1' responded by redistributing riboflavin and betaine in vivo and the most obvious metabolic pathway of 'Jinhuang' enrichment was pyrimidine metabolism, which had undergone complex main body formation and extensive regulatory processes. The changes of metabolites of different varieties under low temperature and high temperature stress were different. Among them, flavonoids or flavonoid derivatives were included in class A (216 metabolites), C (163 metabolites) and D (233 metabolites) metabolites, indicating that flavonoid metabolites had an obvious regulatory effect on mango pollen metabolism under different temperature stress.</p><p><strong>Conclusions: </strong>The present results provide valuable information for reproductive biology studies and breeding in mango, in particular, the selection and breeding of the most suitable varieties for different production areas.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Pollen Germination and Pollen Tube Growth under Different Temperature Stresses in Mango (<i>Mangifera indica</i> L.) by Metabolome.\",\"authors\":\"Xinyu Liu, Lirong Zhou, Chengxun Du, Songbiao Wang, Hongjin Chen, Wentian Xu, Zhuanying Yang, Qingzhi Liang\",\"doi\":\"10.3390/metabo14100543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The dramatic temperature fluctuations spurred by global warming and the accompanying extreme weather events inhibit mango growth and threaten mango productivity. Particularly, mango flowering is highly sensitive to temperature changes. The mango fruit setting rate was significantly positively correlated with pollen activity, and pollen activity was regulated by different metabolites.</p><p><strong>Methods: </strong>In this study, the in vitro pollen of two mango varieties ('Renong No.1' and 'Jinhuang'), in which sensitivity to temperature differed significantly, were subjected to different temperature stresses (15 °C, 25 °C and 35 °C), and their metabolomics were analyzed.</p><p><strong>Results: </strong>The present results showed that 775 differential metabolites were screened by liquid chromatography-mass spectrometry and divided into 12 categories. The two varieties had significant differences in metabolite expression under different temperature stresses and the effect of low temperature on 'Renong No.1' mainly focused on amino acid metabolism, while the effect on 'Jinhuang' was mainly related to glycolysis. However, under the 35 °C temperature stress, 'Renong No.1' responded by redistributing riboflavin and betaine in vivo and the most obvious metabolic pathway of 'Jinhuang' enrichment was pyrimidine metabolism, which had undergone complex main body formation and extensive regulatory processes. The changes of metabolites of different varieties under low temperature and high temperature stress were different. Among them, flavonoids or flavonoid derivatives were included in class A (216 metabolites), C (163 metabolites) and D (233 metabolites) metabolites, indicating that flavonoid metabolites had an obvious regulatory effect on mango pollen metabolism under different temperature stress.</p><p><strong>Conclusions: </strong>The present results provide valuable information for reproductive biology studies and breeding in mango, in particular, the selection and breeding of the most suitable varieties for different production areas.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14100543\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14100543","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of Pollen Germination and Pollen Tube Growth under Different Temperature Stresses in Mango (Mangifera indica L.) by Metabolome.
Background: The dramatic temperature fluctuations spurred by global warming and the accompanying extreme weather events inhibit mango growth and threaten mango productivity. Particularly, mango flowering is highly sensitive to temperature changes. The mango fruit setting rate was significantly positively correlated with pollen activity, and pollen activity was regulated by different metabolites.
Methods: In this study, the in vitro pollen of two mango varieties ('Renong No.1' and 'Jinhuang'), in which sensitivity to temperature differed significantly, were subjected to different temperature stresses (15 °C, 25 °C and 35 °C), and their metabolomics were analyzed.
Results: The present results showed that 775 differential metabolites were screened by liquid chromatography-mass spectrometry and divided into 12 categories. The two varieties had significant differences in metabolite expression under different temperature stresses and the effect of low temperature on 'Renong No.1' mainly focused on amino acid metabolism, while the effect on 'Jinhuang' was mainly related to glycolysis. However, under the 35 °C temperature stress, 'Renong No.1' responded by redistributing riboflavin and betaine in vivo and the most obvious metabolic pathway of 'Jinhuang' enrichment was pyrimidine metabolism, which had undergone complex main body formation and extensive regulatory processes. The changes of metabolites of different varieties under low temperature and high temperature stress were different. Among them, flavonoids or flavonoid derivatives were included in class A (216 metabolites), C (163 metabolites) and D (233 metabolites) metabolites, indicating that flavonoid metabolites had an obvious regulatory effect on mango pollen metabolism under different temperature stress.
Conclusions: The present results provide valuable information for reproductive biology studies and breeding in mango, in particular, the selection and breeding of the most suitable varieties for different production areas.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.