{"title":"利用线弧快速成型技术探索倾斜厚壁结构成型外观的净形状轮廓提取方法","authors":"Yexing Zheng, Yongzhe Li, Yijun Zhou, Xiaoyu Wang, Guangjun Zhang","doi":"10.3390/mi15101262","DOIUrl":null,"url":null,"abstract":"<p><p>Wire arc additive manufacturing (WAAM) offers a viable solution for fabricating large-scale metallic parts, which contain various forms of inclined thick-walled structure. Due to the variety of heat dissipation conditions at different positions, the inclined thick-walled structure is a major challenge in fabrication that may produce collapses and defects. However, there is a lack of effective sensing method for acquiring the forming appearance of individual beads in the structure. This paper proposes a novel approach for extracting individual bead profiles during the WAAM process. The approach utilizes a structured-laser sensor to capture the morphology of the surface before and after deposition, thereby enabling an accurate acquisition of the bead profile by integrating the laser stripes. Utilizing the proposed approach, the research investigated the forming mechanism of beads in inclined thick-walled components that were fabricated by various deposition parameters. The width of the overlapping area at the overhanging feature decreased as the layer number increased, while the height of the same area increased. The height of the overlapping area in each layer increased with an increase in deposition current and decreased when the deposition speed was increased. These phenomena suggest that the heat input is a major factor that influences the formation of the overhanging feature. Both the deposition current and deposition velocity influence heat input, and thereby have an effect in enhancing the geometrical accuracy of an overhanging feature. The experimental results indicate that the proposed approach facilitates morphology change investigation, providing a sufficient reference for optimizing deposition parameters.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509428/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Net Shape Profile Extraction Approach for Exploring the Forming Appearance of Inclined Thick-Walled Structures by Wire Arc Additive Manufacturing.\",\"authors\":\"Yexing Zheng, Yongzhe Li, Yijun Zhou, Xiaoyu Wang, Guangjun Zhang\",\"doi\":\"10.3390/mi15101262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wire arc additive manufacturing (WAAM) offers a viable solution for fabricating large-scale metallic parts, which contain various forms of inclined thick-walled structure. Due to the variety of heat dissipation conditions at different positions, the inclined thick-walled structure is a major challenge in fabrication that may produce collapses and defects. However, there is a lack of effective sensing method for acquiring the forming appearance of individual beads in the structure. This paper proposes a novel approach for extracting individual bead profiles during the WAAM process. The approach utilizes a structured-laser sensor to capture the morphology of the surface before and after deposition, thereby enabling an accurate acquisition of the bead profile by integrating the laser stripes. Utilizing the proposed approach, the research investigated the forming mechanism of beads in inclined thick-walled components that were fabricated by various deposition parameters. The width of the overlapping area at the overhanging feature decreased as the layer number increased, while the height of the same area increased. The height of the overlapping area in each layer increased with an increase in deposition current and decreased when the deposition speed was increased. These phenomena suggest that the heat input is a major factor that influences the formation of the overhanging feature. Both the deposition current and deposition velocity influence heat input, and thereby have an effect in enhancing the geometrical accuracy of an overhanging feature. The experimental results indicate that the proposed approach facilitates morphology change investigation, providing a sufficient reference for optimizing deposition parameters.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101262\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101262","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Net Shape Profile Extraction Approach for Exploring the Forming Appearance of Inclined Thick-Walled Structures by Wire Arc Additive Manufacturing.
Wire arc additive manufacturing (WAAM) offers a viable solution for fabricating large-scale metallic parts, which contain various forms of inclined thick-walled structure. Due to the variety of heat dissipation conditions at different positions, the inclined thick-walled structure is a major challenge in fabrication that may produce collapses and defects. However, there is a lack of effective sensing method for acquiring the forming appearance of individual beads in the structure. This paper proposes a novel approach for extracting individual bead profiles during the WAAM process. The approach utilizes a structured-laser sensor to capture the morphology of the surface before and after deposition, thereby enabling an accurate acquisition of the bead profile by integrating the laser stripes. Utilizing the proposed approach, the research investigated the forming mechanism of beads in inclined thick-walled components that were fabricated by various deposition parameters. The width of the overlapping area at the overhanging feature decreased as the layer number increased, while the height of the same area increased. The height of the overlapping area in each layer increased with an increase in deposition current and decreased when the deposition speed was increased. These phenomena suggest that the heat input is a major factor that influences the formation of the overhanging feature. Both the deposition current and deposition velocity influence heat input, and thereby have an effect in enhancing the geometrical accuracy of an overhanging feature. The experimental results indicate that the proposed approach facilitates morphology change investigation, providing a sufficient reference for optimizing deposition parameters.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.