Zahraa Zaidan, Nedal Al Taradeh, Mohammed Benjelloun, Christophe Rodriguez, Ali Soltani, Josiane Tasselli, Karine Isoird, Luong Viet Phung, Camille Sonneville, Dominique Planson, Yvon Cordier, Frédéric Morancho, Hassan Maher
{"title":"氮化镓基功率集成器件的新型隔离方法","authors":"Zahraa Zaidan, Nedal Al Taradeh, Mohammed Benjelloun, Christophe Rodriguez, Ali Soltani, Josiane Tasselli, Karine Isoird, Luong Viet Phung, Camille Sonneville, Dominique Planson, Yvon Cordier, Frédéric Morancho, Hassan Maher","doi":"10.3390/mi15101223","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant challenge in this technology is ensuring electrical isolation between the two types of devices. We propose a new isolation method designed to prevent any degradation of the lateral transistor's performance. Specifically, high voltage applied to the drain of the vertical GaN power FinFET can adversely affect the lateral GaN HEMT's performance, leading to a shift in the threshold voltage and potentially compromising device stability and driver performance. To address this issue, we introduce a highly doped n<sup>+</sup> GaN layer positioned between the epitaxial layers of the two devices. This approach is validated using the TCAD-Sentaurus simulator, demonstrating that the n<sup>+</sup> GaN layer effectively blocks the vertical electric field and prevents any depletion or enhancement of the 2D electron gas (2DEG) in the lateral GaN HEMT. To our knowledge, this represents the first publication of such an innovative isolation strategy between vertical and lateral GaN devices.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509730/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Isolation Approach for GaN-Based Power Integrated Devices.\",\"authors\":\"Zahraa Zaidan, Nedal Al Taradeh, Mohammed Benjelloun, Christophe Rodriguez, Ali Soltani, Josiane Tasselli, Karine Isoird, Luong Viet Phung, Camille Sonneville, Dominique Planson, Yvon Cordier, Frédéric Morancho, Hassan Maher\",\"doi\":\"10.3390/mi15101223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant challenge in this technology is ensuring electrical isolation between the two types of devices. We propose a new isolation method designed to prevent any degradation of the lateral transistor's performance. Specifically, high voltage applied to the drain of the vertical GaN power FinFET can adversely affect the lateral GaN HEMT's performance, leading to a shift in the threshold voltage and potentially compromising device stability and driver performance. To address this issue, we introduce a highly doped n<sup>+</sup> GaN layer positioned between the epitaxial layers of the two devices. This approach is validated using the TCAD-Sentaurus simulator, demonstrating that the n<sup>+</sup> GaN layer effectively blocks the vertical electric field and prevents any depletion or enhancement of the 2D electron gas (2DEG) in the lateral GaN HEMT. To our knowledge, this represents the first publication of such an innovative isolation strategy between vertical and lateral GaN devices.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101223\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101223","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种将基于氮化镓的垂直和横向器件进行单片集成的新技术。这种方法具有开创性,因为它有利于通过横向 GaN HEMT 驱动大功率 GaN 垂直开关器件,同时损耗最小,稳定性更高。这项技术面临的一个重大挑战是确保两类器件之间的电气隔离。我们提出了一种新的隔离方法,旨在防止横向晶体管性能下降。具体来说,施加到垂直 GaN 功率 FinFET 漏极的高电压会对横向 GaN HEMT 的性能产生不利影响,导致阈值电压偏移,并可能损害器件稳定性和驱动器性能。为了解决这个问题,我们在两个器件的外延层之间引入了一个高掺杂 n+ GaN 层。这种方法通过 TCAD-Sentaurus 仿真器进行了验证,证明 n+ GaN 层能有效阻挡垂直电场,防止横向 GaN HEMT 中的二维电子气体 (2DEG) 出现任何损耗或增强。据我们所知,这是首次在垂直和横向 GaN 器件之间采用这种创新隔离策略。
A Novel Isolation Approach for GaN-Based Power Integrated Devices.
This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant challenge in this technology is ensuring electrical isolation between the two types of devices. We propose a new isolation method designed to prevent any degradation of the lateral transistor's performance. Specifically, high voltage applied to the drain of the vertical GaN power FinFET can adversely affect the lateral GaN HEMT's performance, leading to a shift in the threshold voltage and potentially compromising device stability and driver performance. To address this issue, we introduce a highly doped n+ GaN layer positioned between the epitaxial layers of the two devices. This approach is validated using the TCAD-Sentaurus simulator, demonstrating that the n+ GaN layer effectively blocks the vertical electric field and prevents any depletion or enhancement of the 2D electron gas (2DEG) in the lateral GaN HEMT. To our knowledge, this represents the first publication of such an innovative isolation strategy between vertical and lateral GaN devices.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.