Yuchi Xiao, Chunlai Wang, Hongyang Hou, Weihua Han
{"title":"宽输入范围、低于 1 ppm/°C 的基准电压源。","authors":"Yuchi Xiao, Chunlai Wang, Hongyang Hou, Weihua Han","doi":"10.3390/mi15101273","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous advancement of electronic technology, the application of high-voltage integrated circuits is becoming increasingly prevalent in fields such as power systems, medical devices, and industrial automation. The reference circuit within high-voltage integrated circuits must not only exhibit insensitivity to temperature variations but also maintain stability across a broad voltage supply. This paper presents a bandgap reference (BGR) source capable of operating over a wide input range. This BGR employs a high-order curvature compensation method to eliminate nonlinear voltage terms, resulting in minimal temperature drift. The circuit achieves an impressive temperature coefficient (TC) of 0.88 ppm/°C over a temperature range from -40 °C to 130 °C. To ensure stable operation within a 4-40 V range, the design incorporates a pre-regulation circuit that stabilizes the supply voltage of the BGR core at a fixed value, thereby enhancing the ability to withstand variations in power supply voltage.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509695/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range.\",\"authors\":\"Yuchi Xiao, Chunlai Wang, Hongyang Hou, Weihua Han\",\"doi\":\"10.3390/mi15101273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the continuous advancement of electronic technology, the application of high-voltage integrated circuits is becoming increasingly prevalent in fields such as power systems, medical devices, and industrial automation. The reference circuit within high-voltage integrated circuits must not only exhibit insensitivity to temperature variations but also maintain stability across a broad voltage supply. This paper presents a bandgap reference (BGR) source capable of operating over a wide input range. This BGR employs a high-order curvature compensation method to eliminate nonlinear voltage terms, resulting in minimal temperature drift. The circuit achieves an impressive temperature coefficient (TC) of 0.88 ppm/°C over a temperature range from -40 °C to 130 °C. To ensure stable operation within a 4-40 V range, the design incorporates a pre-regulation circuit that stabilizes the supply voltage of the BGR core at a fixed value, thereby enhancing the ability to withstand variations in power supply voltage.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101273\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101273","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
随着电子技术的不断进步,高压集成电路在电力系统、医疗设备和工业自动化等领域的应用日益广泛。高压集成电路中的基准电路不仅必须对温度变化不敏感,还必须在宽电压电源范围内保持稳定。本文介绍了一种能在宽输入范围内工作的带隙基准 (BGR) 源。该 BGR 采用高阶曲率补偿方法消除非线性电压项,从而将温度漂移降至最低。在 -40 °C 至 130 °C 的温度范围内,该电路的温度系数 (TC) 为 0.88 ppm/°C,令人印象深刻。为确保在 4-40 V 范围内稳定工作,设计中采用了预调节电路,将 BGR 内核的电源电压稳定在一个固定值,从而增强了承受电源电压变化的能力。
A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range.
With the continuous advancement of electronic technology, the application of high-voltage integrated circuits is becoming increasingly prevalent in fields such as power systems, medical devices, and industrial automation. The reference circuit within high-voltage integrated circuits must not only exhibit insensitivity to temperature variations but also maintain stability across a broad voltage supply. This paper presents a bandgap reference (BGR) source capable of operating over a wide input range. This BGR employs a high-order curvature compensation method to eliminate nonlinear voltage terms, resulting in minimal temperature drift. The circuit achieves an impressive temperature coefficient (TC) of 0.88 ppm/°C over a temperature range from -40 °C to 130 °C. To ensure stable operation within a 4-40 V range, the design incorporates a pre-regulation circuit that stabilizes the supply voltage of the BGR core at a fixed value, thereby enhancing the ability to withstand variations in power supply voltage.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.