Weihong Yang, Jiaxin Peng, Qiulin Chen, Sicheng Zhao, Ran Zhuo, Yan Luo, Lingxiao Gao
{"title":"基于微能源技术的海洋波浪能收集技术的进展和未来展望。","authors":"Weihong Yang, Jiaxin Peng, Qiulin Chen, Sicheng Zhao, Ran Zhuo, Yan Luo, Lingxiao Gao","doi":"10.3390/mi15101199","DOIUrl":null,"url":null,"abstract":"<p><p>Marine wave energy exhibits significant potential as a renewable resource due to its substantial energy storage capacity and high energy density. However, conventional wave power generation technologies often suffer from drawbacks such as high maintenance costs, cumbersome structures, and suboptimal conversion efficiencies, thereby limiting their potential. The wave power generation technologies based on micro-energy technology have emerged as promising new approaches in recent years, owing to their inherent advantages of cost-effectiveness, simplistic structure, and ease of manufacturing. This paper provides a comprehensive overview of the current research status in wave energy harvesting through micro-energy technologies, including detailed descriptions of piezoelectric nanogenerators, electromagnetic generators, triboelectric nanogenerators, dielectric elastomer generators, hydrovoltaic generators, and hybrid nanogenerators. Finally, we provide a comprehensive overview of the prevailing issues and challenges associated with these technologies, while also offering insights into the future development trajectory of wave energy harvesting technology.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509528/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancements and Future Prospects in Ocean Wave Energy Harvesting Technology Based on Micro-Energy Technology.\",\"authors\":\"Weihong Yang, Jiaxin Peng, Qiulin Chen, Sicheng Zhao, Ran Zhuo, Yan Luo, Lingxiao Gao\",\"doi\":\"10.3390/mi15101199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine wave energy exhibits significant potential as a renewable resource due to its substantial energy storage capacity and high energy density. However, conventional wave power generation technologies often suffer from drawbacks such as high maintenance costs, cumbersome structures, and suboptimal conversion efficiencies, thereby limiting their potential. The wave power generation technologies based on micro-energy technology have emerged as promising new approaches in recent years, owing to their inherent advantages of cost-effectiveness, simplistic structure, and ease of manufacturing. This paper provides a comprehensive overview of the current research status in wave energy harvesting through micro-energy technologies, including detailed descriptions of piezoelectric nanogenerators, electromagnetic generators, triboelectric nanogenerators, dielectric elastomer generators, hydrovoltaic generators, and hybrid nanogenerators. Finally, we provide a comprehensive overview of the prevailing issues and challenges associated with these technologies, while also offering insights into the future development trajectory of wave energy harvesting technology.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101199\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancements and Future Prospects in Ocean Wave Energy Harvesting Technology Based on Micro-Energy Technology.
Marine wave energy exhibits significant potential as a renewable resource due to its substantial energy storage capacity and high energy density. However, conventional wave power generation technologies often suffer from drawbacks such as high maintenance costs, cumbersome structures, and suboptimal conversion efficiencies, thereby limiting their potential. The wave power generation technologies based on micro-energy technology have emerged as promising new approaches in recent years, owing to their inherent advantages of cost-effectiveness, simplistic structure, and ease of manufacturing. This paper provides a comprehensive overview of the current research status in wave energy harvesting through micro-energy technologies, including detailed descriptions of piezoelectric nanogenerators, electromagnetic generators, triboelectric nanogenerators, dielectric elastomer generators, hydrovoltaic generators, and hybrid nanogenerators. Finally, we provide a comprehensive overview of the prevailing issues and challenges associated with these technologies, while also offering insights into the future development trajectory of wave energy harvesting technology.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.