Tae Yeong Hong, Sarah Eunkyung Kim, Jong Kyung Park, Seul Ki Hong
{"title":"半导体互连中的信号传输效率分析和增强型结构建议。","authors":"Tae Yeong Hong, Sarah Eunkyung Kim, Jong Kyung Park, Seul Ki Hong","doi":"10.3390/mi15101207","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for high-density, high-performance technologies in semiconductor systems increases, efforts are being made to mitigate and optimize the issues of high current density and heat generation within interconnects to ensure reliability. While interconnects are the most fundamental pathways for transmitting current signals, there has been relatively little research conducted on them compared to individual unit devices from the perspective of overall system performance. However, as integration density increases, the amount of loss in interconnects also rises, necessitating research and development to minimize these losses. In this study, we propose a method to analyze power efficiency by utilizing the differences between simulation results and measured results of interconnect structures. We confirmed that the difference between theoretical resistance values and actual measured values varies with the contact area ratio between metal lines and vias, and we analyzed the power efficiency based on these differences. Using the findings, we proposed and validated a structure that can improve power efficiency. This study presents a method to analyze power efficiency and suggests ways to achieve higher power efficiency within the limited specifications of interconnects. This contributes to enhancing power efficiency and ensuring reliability, thereby preserving the performance of the overall system in highly integrated semiconductor systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of Signal Transmission Efficiency in Semiconductor Interconnect and Proposal of Enhanced Structures.\",\"authors\":\"Tae Yeong Hong, Sarah Eunkyung Kim, Jong Kyung Park, Seul Ki Hong\",\"doi\":\"10.3390/mi15101207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the demand for high-density, high-performance technologies in semiconductor systems increases, efforts are being made to mitigate and optimize the issues of high current density and heat generation within interconnects to ensure reliability. While interconnects are the most fundamental pathways for transmitting current signals, there has been relatively little research conducted on them compared to individual unit devices from the perspective of overall system performance. However, as integration density increases, the amount of loss in interconnects also rises, necessitating research and development to minimize these losses. In this study, we propose a method to analyze power efficiency by utilizing the differences between simulation results and measured results of interconnect structures. We confirmed that the difference between theoretical resistance values and actual measured values varies with the contact area ratio between metal lines and vias, and we analyzed the power efficiency based on these differences. Using the findings, we proposed and validated a structure that can improve power efficiency. This study presents a method to analyze power efficiency and suggests ways to achieve higher power efficiency within the limited specifications of interconnects. This contributes to enhancing power efficiency and ensuring reliability, thereby preserving the performance of the overall system in highly integrated semiconductor systems.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101207\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101207","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Analysis of Signal Transmission Efficiency in Semiconductor Interconnect and Proposal of Enhanced Structures.
As the demand for high-density, high-performance technologies in semiconductor systems increases, efforts are being made to mitigate and optimize the issues of high current density and heat generation within interconnects to ensure reliability. While interconnects are the most fundamental pathways for transmitting current signals, there has been relatively little research conducted on them compared to individual unit devices from the perspective of overall system performance. However, as integration density increases, the amount of loss in interconnects also rises, necessitating research and development to minimize these losses. In this study, we propose a method to analyze power efficiency by utilizing the differences between simulation results and measured results of interconnect structures. We confirmed that the difference between theoretical resistance values and actual measured values varies with the contact area ratio between metal lines and vias, and we analyzed the power efficiency based on these differences. Using the findings, we proposed and validated a structure that can improve power efficiency. This study presents a method to analyze power efficiency and suggests ways to achieve higher power efficiency within the limited specifications of interconnects. This contributes to enhancing power efficiency and ensuring reliability, thereby preserving the performance of the overall system in highly integrated semiconductor systems.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.