通过定向能沉积法添加钼对 Cr25-xCo25Ni25Fe25Mox 高熵合金微观结构和耐腐蚀性的影响

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2024-09-27 DOI:10.3390/mi15101196
Han-Eol Kim, Jae-Hyun Kim, Ho-In Jeong, Young-Tae Cho, Osama Salem, Dong-Won Jung, Choon-Man Lee
{"title":"通过定向能沉积法添加钼对 Cr25-xCo25Ni25Fe25Mox 高熵合金微观结构和耐腐蚀性的影响","authors":"Han-Eol Kim, Jae-Hyun Kim, Ho-In Jeong, Young-Tae Cho, Osama Salem, Dong-Won Jung, Choon-Man Lee","doi":"10.3390/mi15101196","DOIUrl":null,"url":null,"abstract":"<p><p>Highly entropy alloys (HEAs) are novel materials that have great potential for application in aerospace and marine engineering due to their superior mechanical properties and benefits over conventional materials. NiCrCoFe, also referred to as Ni-based HEA, has exceptional low-temperature strength and microstructural stability. However, HEAs have limited corrosion resistance in some environments, such as a 3.5 wt% sodium chloride (NaCl) solution. Adding corrosion-resistant elements such as molybdenum (Mo) to HEAs is expected to increase their corrosion resistance in a variety of corrosive environments. Metal additive manufacturing reduces production times compared to casting and eliminates shrinkage issues, making it ideal for producing homogeneous HEA. This study used directed energy deposition (DED) to create Cr<sub>25-x</sub>Co<sub>25</sub>Ni<sub>25</sub>Fe<sub>25</sub>Mo<sub>x</sub> (x = 0, 5, 10%) HEAs. Tensile strength and potentiodynamic polarization tests were used to assess the materials' mechanical properties and corrosion resistance. The mechanical tests revealed that adding 5% Mo increased yield strength (YS) by 20.1% and ultimate tensile strength (UTS) by 9.5% when compared to 0% Mo. Adding 10% Mo led to a 32.5% increase in YS and a 20.4% increase in UTS. Potentiodynamic polarization tests were used to assess corrosion resistance in a 3.5-weight percent NaCl solution. The results showed that adding Mo significantly increased initial corrosion resistance. The alloy with 5% Mo had a higher corrosion potential (E<sub>corr</sub>) and a lower current density (I<sub>corr</sub>) than the alloy with 0% Mo, indicating improved initial corrosion resistance. The alloy containing 10% Mo had the highest corrosion potential and the lowest current density, indicating the slowest corrosion rate and the best initial corrosion resistance. Finally, Cr<sub>25-x</sub>Co<sub>25</sub>Ni<sub>25</sub>Fe<sub>25</sub>Mo<sub>x</sub> (x = 0, 5, 10%) HEAs produced by DED exhibited excellent mechanical properties and corrosion resistance, which can be attributed to the presence of Mo.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Mo Addition on Microstructure and Corrosion Resistance of Cr<sub>25-x</sub>Co<sub>25</sub>Ni<sub>25</sub>Fe<sub>25</sub>Mo<sub>x</sub> High-Entropy Alloys via Directed Energy Deposition.\",\"authors\":\"Han-Eol Kim, Jae-Hyun Kim, Ho-In Jeong, Young-Tae Cho, Osama Salem, Dong-Won Jung, Choon-Man Lee\",\"doi\":\"10.3390/mi15101196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly entropy alloys (HEAs) are novel materials that have great potential for application in aerospace and marine engineering due to their superior mechanical properties and benefits over conventional materials. NiCrCoFe, also referred to as Ni-based HEA, has exceptional low-temperature strength and microstructural stability. However, HEAs have limited corrosion resistance in some environments, such as a 3.5 wt% sodium chloride (NaCl) solution. Adding corrosion-resistant elements such as molybdenum (Mo) to HEAs is expected to increase their corrosion resistance in a variety of corrosive environments. Metal additive manufacturing reduces production times compared to casting and eliminates shrinkage issues, making it ideal for producing homogeneous HEA. This study used directed energy deposition (DED) to create Cr<sub>25-x</sub>Co<sub>25</sub>Ni<sub>25</sub>Fe<sub>25</sub>Mo<sub>x</sub> (x = 0, 5, 10%) HEAs. Tensile strength and potentiodynamic polarization tests were used to assess the materials' mechanical properties and corrosion resistance. The mechanical tests revealed that adding 5% Mo increased yield strength (YS) by 20.1% and ultimate tensile strength (UTS) by 9.5% when compared to 0% Mo. Adding 10% Mo led to a 32.5% increase in YS and a 20.4% increase in UTS. Potentiodynamic polarization tests were used to assess corrosion resistance in a 3.5-weight percent NaCl solution. The results showed that adding Mo significantly increased initial corrosion resistance. The alloy with 5% Mo had a higher corrosion potential (E<sub>corr</sub>) and a lower current density (I<sub>corr</sub>) than the alloy with 0% Mo, indicating improved initial corrosion resistance. The alloy containing 10% Mo had the highest corrosion potential and the lowest current density, indicating the slowest corrosion rate and the best initial corrosion resistance. Finally, Cr<sub>25-x</sub>Co<sub>25</sub>Ni<sub>25</sub>Fe<sub>25</sub>Mo<sub>x</sub> (x = 0, 5, 10%) HEAs produced by DED exhibited excellent mechanical properties and corrosion resistance, which can be attributed to the presence of Mo.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101196\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101196","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEAs)是一种新型材料,由于其优越的机械性能和优于传统材料的优点,在航空航天和海洋工程领域具有巨大的应用潜力。镍铬钴铁也称为镍基高熵合金,具有优异的低温强度和微观结构稳定性。然而,HEA 在某些环境中(如 3.5 wt% 的氯化钠(NaCl)溶液)的耐腐蚀性有限。在 HEA 中添加钼(Mo)等耐腐蚀元素有望提高其在各种腐蚀环境中的耐腐蚀性。与铸造相比,金属添加剂制造缩短了生产时间,并消除了收缩问题,是生产均质 HEA 的理想选择。本研究使用定向能沉积 (DED) 技术制造出 Cr25-xCo25Ni25Fe25Mox (x = 0、5、10%)HEA。拉伸强度和电位极化测试用于评估材料的机械性能和耐腐蚀性。机械测试表明,与 0% Mo 相比,添加 5% Mo 可使屈服强度(YS)提高 20.1%,极限拉伸强度(UTS)提高 9.5%。添加 10%的钼可使 YS 增加 32.5%,UTS 增加 20.4%。电位极化测试用于评估 3.5% 氯化钠溶液中的耐腐蚀性。结果表明,添加钼可显著提高初始耐腐蚀性。与含钼 0% 的合金相比,含钼 5% 的合金具有更高的腐蚀电位 (Ecorr) 和更低的电流密度 (Icorr),这表明初始耐腐蚀性得到了改善。含 Mo 10% 的合金具有最高的腐蚀电位和最低的电流密度,表明其腐蚀速度最慢,初始耐腐蚀性最好。最后,通过 DED 生产的 Cr25-xCo25Ni25Fe25Mox(x = 0、5、10%)HEA 具有优异的机械性能和耐腐蚀性能,这可归功于钼的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Mo Addition on Microstructure and Corrosion Resistance of Cr25-xCo25Ni25Fe25Mox High-Entropy Alloys via Directed Energy Deposition.

Highly entropy alloys (HEAs) are novel materials that have great potential for application in aerospace and marine engineering due to their superior mechanical properties and benefits over conventional materials. NiCrCoFe, also referred to as Ni-based HEA, has exceptional low-temperature strength and microstructural stability. However, HEAs have limited corrosion resistance in some environments, such as a 3.5 wt% sodium chloride (NaCl) solution. Adding corrosion-resistant elements such as molybdenum (Mo) to HEAs is expected to increase their corrosion resistance in a variety of corrosive environments. Metal additive manufacturing reduces production times compared to casting and eliminates shrinkage issues, making it ideal for producing homogeneous HEA. This study used directed energy deposition (DED) to create Cr25-xCo25Ni25Fe25Mox (x = 0, 5, 10%) HEAs. Tensile strength and potentiodynamic polarization tests were used to assess the materials' mechanical properties and corrosion resistance. The mechanical tests revealed that adding 5% Mo increased yield strength (YS) by 20.1% and ultimate tensile strength (UTS) by 9.5% when compared to 0% Mo. Adding 10% Mo led to a 32.5% increase in YS and a 20.4% increase in UTS. Potentiodynamic polarization tests were used to assess corrosion resistance in a 3.5-weight percent NaCl solution. The results showed that adding Mo significantly increased initial corrosion resistance. The alloy with 5% Mo had a higher corrosion potential (Ecorr) and a lower current density (Icorr) than the alloy with 0% Mo, indicating improved initial corrosion resistance. The alloy containing 10% Mo had the highest corrosion potential and the lowest current density, indicating the slowest corrosion rate and the best initial corrosion resistance. Finally, Cr25-xCo25Ni25Fe25Mox (x = 0, 5, 10%) HEAs produced by DED exhibited excellent mechanical properties and corrosion resistance, which can be attributed to the presence of Mo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range. A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. Integration of Metrology in Grinding and Polishing Processes for Rotationally Symmetrical Aspherical Surfaces with Optimized Material Removal Functions. Investigation on the Machinability of Polycrystalline ZnS by Micro-Laser-Assisted Diamond Cutting. Optimal Control of FSBB Converter with Aquila Optimizer-Based PID Controller.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1