Tao Kuai, Qingfa Du, Jiafei Hu, Shilong Shi, Peisen Li, Dixiang Chen, Mengchun Pan
{"title":"通过参考磁场对隧道磁阻微磁传感器进行温度补偿的方法。","authors":"Tao Kuai, Qingfa Du, Jiafei Hu, Shilong Shi, Peisen Li, Dixiang Chen, Mengchun Pan","doi":"10.3390/mi15101271","DOIUrl":null,"url":null,"abstract":"<p><p>The sensitivity of Tunnel Magnetoresistance (TMR) sensors is characterized by significant temperature drift and poor sensitivity drift repeatability, which severely impairs measurement accuracy. Conventional temperature compensation techniques are often hindered by low compensation precision, inadequate real-time performance, and an inability to effectively address the issue of poor repeatability in temperature drift characteristics. To overcome these challenges, this paper introduces a novel method for suppressing temperature drift in TMR sensors. In this method, an alternating reference magnetic field is applied to TMR sensors, and the output amplitude at the frequency of the reference magnetic field is calculated to compensate the sensitivity temperature drift in real time. Temperature characteristic tests were conducted in a non-magnetic temperature test chamber, and the results revealed that the proposed method significantly reduced the TMR sensitivity drift coefficient from 985.39 ppm/°C to 59.08 ppm/°C. Additionally, the repeatability of sensitivity temperature characteristic curves was enhanced, with a reduction in root mean square error from 0.84 to 0.21. This approach effectively mitigates temperature-induced sensitivity drift without necessitating the use of a temperature sensor, and has the advantages of real-time performance and repeatability, providing a new approach for the high-precision temperature drift suppression of TMR.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509234/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temperature Compensation Method for Tunnel Magnetoresistance Micro-Magnetic Sensors Through Reference Magnetic Field.\",\"authors\":\"Tao Kuai, Qingfa Du, Jiafei Hu, Shilong Shi, Peisen Li, Dixiang Chen, Mengchun Pan\",\"doi\":\"10.3390/mi15101271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sensitivity of Tunnel Magnetoresistance (TMR) sensors is characterized by significant temperature drift and poor sensitivity drift repeatability, which severely impairs measurement accuracy. Conventional temperature compensation techniques are often hindered by low compensation precision, inadequate real-time performance, and an inability to effectively address the issue of poor repeatability in temperature drift characteristics. To overcome these challenges, this paper introduces a novel method for suppressing temperature drift in TMR sensors. In this method, an alternating reference magnetic field is applied to TMR sensors, and the output amplitude at the frequency of the reference magnetic field is calculated to compensate the sensitivity temperature drift in real time. Temperature characteristic tests were conducted in a non-magnetic temperature test chamber, and the results revealed that the proposed method significantly reduced the TMR sensitivity drift coefficient from 985.39 ppm/°C to 59.08 ppm/°C. Additionally, the repeatability of sensitivity temperature characteristic curves was enhanced, with a reduction in root mean square error from 0.84 to 0.21. This approach effectively mitigates temperature-induced sensitivity drift without necessitating the use of a temperature sensor, and has the advantages of real-time performance and repeatability, providing a new approach for the high-precision temperature drift suppression of TMR.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101271\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101271","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Temperature Compensation Method for Tunnel Magnetoresistance Micro-Magnetic Sensors Through Reference Magnetic Field.
The sensitivity of Tunnel Magnetoresistance (TMR) sensors is characterized by significant temperature drift and poor sensitivity drift repeatability, which severely impairs measurement accuracy. Conventional temperature compensation techniques are often hindered by low compensation precision, inadequate real-time performance, and an inability to effectively address the issue of poor repeatability in temperature drift characteristics. To overcome these challenges, this paper introduces a novel method for suppressing temperature drift in TMR sensors. In this method, an alternating reference magnetic field is applied to TMR sensors, and the output amplitude at the frequency of the reference magnetic field is calculated to compensate the sensitivity temperature drift in real time. Temperature characteristic tests were conducted in a non-magnetic temperature test chamber, and the results revealed that the proposed method significantly reduced the TMR sensitivity drift coefficient from 985.39 ppm/°C to 59.08 ppm/°C. Additionally, the repeatability of sensitivity temperature characteristic curves was enhanced, with a reduction in root mean square error from 0.84 to 0.21. This approach effectively mitigates temperature-induced sensitivity drift without necessitating the use of a temperature sensor, and has the advantages of real-time performance and repeatability, providing a new approach for the high-precision temperature drift suppression of TMR.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.