Ibrahim M Abdelrazek, Alexej Knaus, Behnam Javanmardi, Peter M Krawitz, Denise Horn, Ebtesam M Abdalla, Sheetal Kumar
{"title":"伴有可能致病的 BMPR1B 变异的畸形发育不良:后轴多指畸形是一种新的临床发现","authors":"Ibrahim M Abdelrazek, Alexej Knaus, Behnam Javanmardi, Peter M Krawitz, Denise Horn, Ebtesam M Abdalla, Sheetal Kumar","doi":"10.1002/mgg3.70023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acromesomelic chondrodysplasias are a rare subgroup of the clinically and genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities in the limb development and short stature. Here, we report a 2-year-old boy, offspring of consanguineous parents, with acromesomelic dysplasia and postaxial polydactyly in which exome sequencing identified a novel homozygous missense variant in BMPR1B. The patient showed skeletal malformation of both hands and feet that included complex brachydactyly with the thumbs most severely affected, postaxial polydactyly of both hands, shortened toes as well as a bilateral hypoplasia of the fibula.</p><p><strong>Methods: </strong>Whole trio exome sequencing was conducted to identify potential genetic variants in the patient.</p><p><strong>Results: </strong>The analysis identified the biallelic variant NM_001203.3:c.821A > G;p.(Gln274Arg) in BMPR1B, a gene encoding bone morphogenetic protein receptor 1B.</p><p><strong>Conclusion: </strong>The skeletal phenotype can be brought in line with the phenotypes of previously reported cases of BMPR1B-associated chondrodysplasias. However, the postaxial polydactyly described here is a novel clinical finding in a BMPR1B-related case; notably, it has previously been reported in other acromesomelic dysplasia cases caused by homozygous pathogenic variants in GDF5-a gene which encodes for growth differentiation factor 5, a high-affinity ligand to BMPR1B.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"12 10","pages":"e70023"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acromesomelic Dysplasia With Homozygosity for a Likely Pathogenic BMPR1B Variant: Postaxial Polydactyly as a Novel Clinical Finding.\",\"authors\":\"Ibrahim M Abdelrazek, Alexej Knaus, Behnam Javanmardi, Peter M Krawitz, Denise Horn, Ebtesam M Abdalla, Sheetal Kumar\",\"doi\":\"10.1002/mgg3.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acromesomelic chondrodysplasias are a rare subgroup of the clinically and genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities in the limb development and short stature. Here, we report a 2-year-old boy, offspring of consanguineous parents, with acromesomelic dysplasia and postaxial polydactyly in which exome sequencing identified a novel homozygous missense variant in BMPR1B. The patient showed skeletal malformation of both hands and feet that included complex brachydactyly with the thumbs most severely affected, postaxial polydactyly of both hands, shortened toes as well as a bilateral hypoplasia of the fibula.</p><p><strong>Methods: </strong>Whole trio exome sequencing was conducted to identify potential genetic variants in the patient.</p><p><strong>Results: </strong>The analysis identified the biallelic variant NM_001203.3:c.821A > G;p.(Gln274Arg) in BMPR1B, a gene encoding bone morphogenetic protein receptor 1B.</p><p><strong>Conclusion: </strong>The skeletal phenotype can be brought in line with the phenotypes of previously reported cases of BMPR1B-associated chondrodysplasias. However, the postaxial polydactyly described here is a novel clinical finding in a BMPR1B-related case; notably, it has previously been reported in other acromesomelic dysplasia cases caused by homozygous pathogenic variants in GDF5-a gene which encodes for growth differentiation factor 5, a high-affinity ligand to BMPR1B.</p>\",\"PeriodicalId\":18852,\"journal\":{\"name\":\"Molecular Genetics & Genomic Medicine\",\"volume\":\"12 10\",\"pages\":\"e70023\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics & Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mgg3.70023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.70023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Acromesomelic Dysplasia With Homozygosity for a Likely Pathogenic BMPR1B Variant: Postaxial Polydactyly as a Novel Clinical Finding.
Background: Acromesomelic chondrodysplasias are a rare subgroup of the clinically and genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities in the limb development and short stature. Here, we report a 2-year-old boy, offspring of consanguineous parents, with acromesomelic dysplasia and postaxial polydactyly in which exome sequencing identified a novel homozygous missense variant in BMPR1B. The patient showed skeletal malformation of both hands and feet that included complex brachydactyly with the thumbs most severely affected, postaxial polydactyly of both hands, shortened toes as well as a bilateral hypoplasia of the fibula.
Methods: Whole trio exome sequencing was conducted to identify potential genetic variants in the patient.
Results: The analysis identified the biallelic variant NM_001203.3:c.821A > G;p.(Gln274Arg) in BMPR1B, a gene encoding bone morphogenetic protein receptor 1B.
Conclusion: The skeletal phenotype can be brought in line with the phenotypes of previously reported cases of BMPR1B-associated chondrodysplasias. However, the postaxial polydactyly described here is a novel clinical finding in a BMPR1B-related case; notably, it has previously been reported in other acromesomelic dysplasia cases caused by homozygous pathogenic variants in GDF5-a gene which encodes for growth differentiation factor 5, a high-affinity ligand to BMPR1B.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.