Jason William Grunberger, Hannah S Newton, Duncan Donohue, Marina A Dobrovolskaia, Hamidreza Ghandehari
{"title":"理化特性在二氧化硅纳米粒子介导的免疫刺激中的作用","authors":"Jason William Grunberger, Hannah S Newton, Duncan Donohue, Marina A Dobrovolskaia, Hamidreza Ghandehari","doi":"10.1080/17435390.2024.2418088","DOIUrl":null,"url":null,"abstract":"<p><p>Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an <i>in vitro</i> study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce <i>de novo</i> and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"599-617"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of physicochemical properties in silica nanoparticle-mediated immunostimulation.\",\"authors\":\"Jason William Grunberger, Hannah S Newton, Duncan Donohue, Marina A Dobrovolskaia, Hamidreza Ghandehari\",\"doi\":\"10.1080/17435390.2024.2418088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an <i>in vitro</i> study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce <i>de novo</i> and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"599-617\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2418088\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2418088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
纳米粒子引起的免疫刺激可能是有益的,也可能是有害的,这取决于其预期应用。对于以免疫系统为治疗目标的适应症,如肿瘤微环境重编程、免疫疗法和疫苗,激活免疫细胞是有益的。但如果不希望出现这种情况,免疫刺激可能会导致过度炎症、细胞因子风暴和超敏反应。越来越多的二氧化硅纳米颗粒(SiNPs)被用于递送药物、成像剂和抗原,这就需要进行临床前研究,以了解载体介导的对免疫细胞亚群的数量、活化状态和功能的影响。在此,我们利用原代人类外周血单核细胞(PBMC)进行了一项体外研究,以调查四种不同大小和孔隙率的 SiNPs 的促炎特性。在静息和 LPS 激发的 PBMC 培养物中进行了细胞因子分析,以了解二氧化硅纳米粒子分别诱导新生炎症和加剧原有炎症的能力。流式细胞术研究了淋巴细胞和骨髓细胞数量和活化状态的变化,以进一步了解 SiNP 介导的免疫刺激。研究发现,无孔 SiNPs 比介孔 SiNPs 更能促进炎症反应,而较大尺寸的 SiNPs 能诱导更大的细胞因子反应。以 LPS 为诱饵的 PBMC 对 SiNPs 的敏感性增加。对经 SiNP 处理的 PBMC 进行免疫分型分析,结果发现 T 和 B 淋巴细胞、自然杀伤细胞和树突状细胞被激活。此外,在所有颗粒中都观察到调节性 T 细胞的减少和 γδ TCR T 细胞群的增加。这些研究结果对 SiNPs 在药物输送和成像剂方面的应用具有重要意义。
Role of physicochemical properties in silica nanoparticle-mediated immunostimulation.
Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an in vitro study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce de novo and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.