Marcin Cybulski, Olga Michalak, Włodzimierz Buchowicz, Maria Mazur
{"title":"作为潜在治疗药物的安萨二茂铁衍生物。","authors":"Marcin Cybulski, Olga Michalak, Włodzimierz Buchowicz, Maria Mazur","doi":"10.3390/molecules29204903","DOIUrl":null,"url":null,"abstract":"<p><p>It has been known since the 1990s that the introduction of a ferrocenyl-type substituent into compounds with proven biological activity can improve their properties. More recently, it was also shown that a carbon bridge connecting the two cyclopentadienyl rings in ferrocene derivatives could enhance the biological properties of the new compounds compared to those without them. However, the synthesis of ferrocenes with this additional linker, known as <i>ansa</i>-ferrocenes, is more difficult due to advanced synthetic protocols and the phenomenon of planar chirality in ring-substituted compounds. As a result, research into the formation of hybrids, conjugates and other <i>ansa</i>-ferrocene derivatives has not been widely conducted. This review discusses the potential biological properties of these units, covering scientific articles published between 1980 and 2024.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510318/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Ansa</i>-Ferrocene Derivatives as Potential Therapeutics.\",\"authors\":\"Marcin Cybulski, Olga Michalak, Włodzimierz Buchowicz, Maria Mazur\",\"doi\":\"10.3390/molecules29204903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been known since the 1990s that the introduction of a ferrocenyl-type substituent into compounds with proven biological activity can improve their properties. More recently, it was also shown that a carbon bridge connecting the two cyclopentadienyl rings in ferrocene derivatives could enhance the biological properties of the new compounds compared to those without them. However, the synthesis of ferrocenes with this additional linker, known as <i>ansa</i>-ferrocenes, is more difficult due to advanced synthetic protocols and the phenomenon of planar chirality in ring-substituted compounds. As a result, research into the formation of hybrids, conjugates and other <i>ansa</i>-ferrocene derivatives has not been widely conducted. This review discusses the potential biological properties of these units, covering scientific articles published between 1980 and 2024.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29204903\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204903","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ansa-Ferrocene Derivatives as Potential Therapeutics.
It has been known since the 1990s that the introduction of a ferrocenyl-type substituent into compounds with proven biological activity can improve their properties. More recently, it was also shown that a carbon bridge connecting the two cyclopentadienyl rings in ferrocene derivatives could enhance the biological properties of the new compounds compared to those without them. However, the synthesis of ferrocenes with this additional linker, known as ansa-ferrocenes, is more difficult due to advanced synthetic protocols and the phenomenon of planar chirality in ring-substituted compounds. As a result, research into the formation of hybrids, conjugates and other ansa-ferrocene derivatives has not been widely conducted. This review discusses the potential biological properties of these units, covering scientific articles published between 1980 and 2024.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.