{"title":"甲羟孕酮在双子表面活性剂胶束中的不同增溶机制:与孕酮的比较研究。","authors":"Hiromichi Nakahara, Kazutaka Koga, Keisuke Matsuoka","doi":"10.3390/molecules29204945","DOIUrl":null,"url":null,"abstract":"<p><p>The solubilization behavior of medroxyprogesterone (MP) within gemini surfactant micelles (14-6-14,2Br<sup>-</sup>) was investigated and compared with that of progesterone to uncover distinct solubilization mechanisms. We employed <sup>1</sup>H-NMR and 2D ROESY spectroscopy to elucidate the spatial positioning of MP within the micelle, revealing that MP integrates more deeply into the micellar core. This behavior is linked to the unique structural features of MP, particularly its 17β-acetyl group, which promotes enhanced interactions with the hydrophobic regions of the micelle, while the 6α-methyl group interacts with the hydrophilic regions of the micelle. The 2D ROESY correlations specifically highlighted interactions between the hydrophobic chains of the surfactant and two protons of MP, H22 and H19. Complementary machine learning and electron density analyses supported these spectroscopic findings, underscoring the pivotal role of the molecular characteristics of MP in its solubilization behavior. These insights into the solubilization dynamics of MP not only advance our understanding of hydrophobic compound incorporation in gemini surfactant micelles but also indicate the potential of 14-6-14,2Br<sup>-</sup> micelles for diverse drug delivery applications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510562/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct Solubilization Mechanisms of Medroxyprogesterone in Gemini Surfactant Micelles: A Comparative Study with Progesterone.\",\"authors\":\"Hiromichi Nakahara, Kazutaka Koga, Keisuke Matsuoka\",\"doi\":\"10.3390/molecules29204945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The solubilization behavior of medroxyprogesterone (MP) within gemini surfactant micelles (14-6-14,2Br<sup>-</sup>) was investigated and compared with that of progesterone to uncover distinct solubilization mechanisms. We employed <sup>1</sup>H-NMR and 2D ROESY spectroscopy to elucidate the spatial positioning of MP within the micelle, revealing that MP integrates more deeply into the micellar core. This behavior is linked to the unique structural features of MP, particularly its 17β-acetyl group, which promotes enhanced interactions with the hydrophobic regions of the micelle, while the 6α-methyl group interacts with the hydrophilic regions of the micelle. The 2D ROESY correlations specifically highlighted interactions between the hydrophobic chains of the surfactant and two protons of MP, H22 and H19. Complementary machine learning and electron density analyses supported these spectroscopic findings, underscoring the pivotal role of the molecular characteristics of MP in its solubilization behavior. These insights into the solubilization dynamics of MP not only advance our understanding of hydrophobic compound incorporation in gemini surfactant micelles but also indicate the potential of 14-6-14,2Br<sup>-</sup> micelles for diverse drug delivery applications.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510562/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29204945\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204945","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Distinct Solubilization Mechanisms of Medroxyprogesterone in Gemini Surfactant Micelles: A Comparative Study with Progesterone.
The solubilization behavior of medroxyprogesterone (MP) within gemini surfactant micelles (14-6-14,2Br-) was investigated and compared with that of progesterone to uncover distinct solubilization mechanisms. We employed 1H-NMR and 2D ROESY spectroscopy to elucidate the spatial positioning of MP within the micelle, revealing that MP integrates more deeply into the micellar core. This behavior is linked to the unique structural features of MP, particularly its 17β-acetyl group, which promotes enhanced interactions with the hydrophobic regions of the micelle, while the 6α-methyl group interacts with the hydrophilic regions of the micelle. The 2D ROESY correlations specifically highlighted interactions between the hydrophobic chains of the surfactant and two protons of MP, H22 and H19. Complementary machine learning and electron density analyses supported these spectroscopic findings, underscoring the pivotal role of the molecular characteristics of MP in its solubilization behavior. These insights into the solubilization dynamics of MP not only advance our understanding of hydrophobic compound incorporation in gemini surfactant micelles but also indicate the potential of 14-6-14,2Br- micelles for diverse drug delivery applications.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.