Juan Carlos López-Ramos, Esther Martínez-Lara, Julia Serrano, Patricia Fernández, Gloria G Parras, Antonio Ruiz-Marcos, José Rodrigo
{"title":"新生甲状腺功能减退大鼠大脑发育过程中的一氧化氮合酶系统","authors":"Juan Carlos López-Ramos, Esther Martínez-Lara, Julia Serrano, Patricia Fernández, Gloria G Parras, Antonio Ruiz-Marcos, José Rodrigo","doi":"10.1016/j.neuroscience.2024.10.040","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitric oxide synthase system in the brain development of neonatal hypothyroid rats.\",\"authors\":\"Juan Carlos López-Ramos, Esther Martínez-Lara, Julia Serrano, Patricia Fernández, Gloria G Parras, Antonio Ruiz-Marcos, José Rodrigo\",\"doi\":\"10.1016/j.neuroscience.2024.10.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.10.040\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.10.040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
甲状腺激素在胎儿期和新生儿期发挥着重要的形态发生作用,并调节着许多新陈代谢过程。在中枢神经系统中,它们控制着髓鞘化和大脑的整体发育、区域基因表达以及耗氧量的调节。在胎儿期和新生儿期,由于缺乏甲状腺功能或碘缺乏,它们的缺乏会导致严重的智力迟钝。同时,一氧化氮是一种非典型神经递质,在神经元的发育和可塑性方面也有特殊意义,并具有血管扩张剂的功能,可调节脑血流量。虽然在生理条件下,它具有保护神经的功能,但过量时也会对神经产生毒性。我们通过免疫细胞化学和 Western 印迹技术,研究了一氧化氮合酶的神经元和诱导型同工酶,以及一氧化氮存在时蛋白质硝化的标志物硝基酪氨酸在出生后大脑发育早期阶段的表达变化。我们从妊娠第七天开始给孕妇注射巯甲基咪唑,诱发甲状腺功能减退症,直至后代被处死。结果显示,在甲状腺功能减退的动物体内,一氧化氮合酶的两种同工酶的表达延迟演变,随后在后期出现异常过度表达。最后,硝基酪氨酸的表达与对照组和甲状腺机能减退动物体内两种同工酶的表达同步进行。
Nitric oxide synthase system in the brain development of neonatal hypothyroid rats.
Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.