{"title":"基于转录组的苜蓿(Medicago sativa)种子老化对萌芽特性和抗氧化系统的动态响应。","authors":"Shoujiang Sun, Chunjiao Mi, Wen Ma, Peisheng Mao","doi":"10.1016/j.plaphy.2024.109205","DOIUrl":null,"url":null,"abstract":"<div><div>Seed aging poses a significant challenge to agronomic production and germplasm conservation. Reactive oxygen species (ROS) are highly involved in the aging process. However, dynamic response of germination characteristics and antioxidant system to seed aging are not yet very clear. This study explored the potential physiological mechanisms responsible for the reduced and rapid loss of seed vigor in alfalfa, and identified key genes regulating seed vigor. The germination percentage exhibited a decreased trend with the prolongation of aging duration. From 16 to 32 days of aging, the antioxidant enzyme activities of SOD, POD, CAT, DHAR and MDHAR declined significantly, which lead to the disruption of ROS balance and a significant increase in ROS levels, exacerbating seed aging. Based on transcriptome, 29 differentially expressed genes (DEGs) including <em>SOD1</em>, <em>APX-2</em> and <em>GST-7</em> within the ROS scavenging system showed a significantly down-regulated expression trend at aging of 16 and 24 days, indicating the abnormal function of antioxidant metabolism. Furthermore, some related genes including <em>ATPF1B</em>, <em>ATPeF0C-3</em>, <em>NDUFS1</em>, <em>NDUFS3</em> and <em>ND2</em> in the mitochondrial ETC exhibited a downturn following seed aging, which would result in the losing of seed vigor. This study has uncovered a significant array of potential target genes within the seed antioxidant system and mitochondrial ETC. These discoveries offer a wider lens for delving into the molecular regulatory mechanisms of seed aging. Further research is crucial to comprehensively elucidate the precise pathways through which these pivotal genes regulate seed vigor.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109205"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic responses of germination characteristics and antioxidant systems to alfalfa (Medicago sativa) seed aging based on transcriptome\",\"authors\":\"Shoujiang Sun, Chunjiao Mi, Wen Ma, Peisheng Mao\",\"doi\":\"10.1016/j.plaphy.2024.109205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seed aging poses a significant challenge to agronomic production and germplasm conservation. Reactive oxygen species (ROS) are highly involved in the aging process. However, dynamic response of germination characteristics and antioxidant system to seed aging are not yet very clear. This study explored the potential physiological mechanisms responsible for the reduced and rapid loss of seed vigor in alfalfa, and identified key genes regulating seed vigor. The germination percentage exhibited a decreased trend with the prolongation of aging duration. From 16 to 32 days of aging, the antioxidant enzyme activities of SOD, POD, CAT, DHAR and MDHAR declined significantly, which lead to the disruption of ROS balance and a significant increase in ROS levels, exacerbating seed aging. Based on transcriptome, 29 differentially expressed genes (DEGs) including <em>SOD1</em>, <em>APX-2</em> and <em>GST-7</em> within the ROS scavenging system showed a significantly down-regulated expression trend at aging of 16 and 24 days, indicating the abnormal function of antioxidant metabolism. Furthermore, some related genes including <em>ATPF1B</em>, <em>ATPeF0C-3</em>, <em>NDUFS1</em>, <em>NDUFS3</em> and <em>ND2</em> in the mitochondrial ETC exhibited a downturn following seed aging, which would result in the losing of seed vigor. This study has uncovered a significant array of potential target genes within the seed antioxidant system and mitochondrial ETC. These discoveries offer a wider lens for delving into the molecular regulatory mechanisms of seed aging. Further research is crucial to comprehensively elucidate the precise pathways through which these pivotal genes regulate seed vigor.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"217 \",\"pages\":\"Article 109205\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824008738\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824008738","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Dynamic responses of germination characteristics and antioxidant systems to alfalfa (Medicago sativa) seed aging based on transcriptome
Seed aging poses a significant challenge to agronomic production and germplasm conservation. Reactive oxygen species (ROS) are highly involved in the aging process. However, dynamic response of germination characteristics and antioxidant system to seed aging are not yet very clear. This study explored the potential physiological mechanisms responsible for the reduced and rapid loss of seed vigor in alfalfa, and identified key genes regulating seed vigor. The germination percentage exhibited a decreased trend with the prolongation of aging duration. From 16 to 32 days of aging, the antioxidant enzyme activities of SOD, POD, CAT, DHAR and MDHAR declined significantly, which lead to the disruption of ROS balance and a significant increase in ROS levels, exacerbating seed aging. Based on transcriptome, 29 differentially expressed genes (DEGs) including SOD1, APX-2 and GST-7 within the ROS scavenging system showed a significantly down-regulated expression trend at aging of 16 and 24 days, indicating the abnormal function of antioxidant metabolism. Furthermore, some related genes including ATPF1B, ATPeF0C-3, NDUFS1, NDUFS3 and ND2 in the mitochondrial ETC exhibited a downturn following seed aging, which would result in the losing of seed vigor. This study has uncovered a significant array of potential target genes within the seed antioxidant system and mitochondrial ETC. These discoveries offer a wider lens for delving into the molecular regulatory mechanisms of seed aging. Further research is crucial to comprehensively elucidate the precise pathways through which these pivotal genes regulate seed vigor.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.