Nicolai Kraus, Michael Aichem, Karsten Klein, Etienne Lein, Alex Jordan, Falk Schreiber
{"title":"TIBA:用于对动物行为的时间发生、互动和转换进行可视化分析的网络应用程序。","authors":"Nicolai Kraus, Michael Aichem, Karsten Klein, Etienne Lein, Alex Jordan, Falk Schreiber","doi":"10.1371/journal.pcbi.1012425","DOIUrl":null,"url":null,"abstract":"<p><p>Data in behavioral research is often quantified with event-logging software, generating large data sets containing detailed information about subjects, recipients, and the duration of behaviors. Exploring and analyzing such large data sets can be challenging without tools to visualize behavioral interactions between individuals or transitions between behavioral states, yet software that can adequately visualize complex behavioral data sets is rare. TIBA (The Interactive Behavior Analyzer) is a web application for behavioral data visualization, which provides a series of interactive visualizations, including the temporal occurrences of behavioral events, the number and direction of interactions between individuals, the behavioral transitions and their respective transitional frequencies, as well as the visual and algorithmic comparison of the latter across data sets. It can therefore be applied to visualize behavior across individuals, species, or contexts. Several filtering options (selection of behaviors and individuals) together with options to set node and edge properties (in the network drawings) allow for interactive customization of the output drawings, which can also be downloaded afterwards. TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. The web application and usage instructions are available at tiba.inf.uni-konstanz.de. The source code is publicly available on GitHub: github.com/LSI-UniKonstanz/tiba.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508483/pdf/","citationCount":"0","resultStr":"{\"title\":\"TIBA: A web application for the visual analysis of temporal occurrences, interactions, and transitions of animal behavior.\",\"authors\":\"Nicolai Kraus, Michael Aichem, Karsten Klein, Etienne Lein, Alex Jordan, Falk Schreiber\",\"doi\":\"10.1371/journal.pcbi.1012425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data in behavioral research is often quantified with event-logging software, generating large data sets containing detailed information about subjects, recipients, and the duration of behaviors. Exploring and analyzing such large data sets can be challenging without tools to visualize behavioral interactions between individuals or transitions between behavioral states, yet software that can adequately visualize complex behavioral data sets is rare. TIBA (The Interactive Behavior Analyzer) is a web application for behavioral data visualization, which provides a series of interactive visualizations, including the temporal occurrences of behavioral events, the number and direction of interactions between individuals, the behavioral transitions and their respective transitional frequencies, as well as the visual and algorithmic comparison of the latter across data sets. It can therefore be applied to visualize behavior across individuals, species, or contexts. Several filtering options (selection of behaviors and individuals) together with options to set node and edge properties (in the network drawings) allow for interactive customization of the output drawings, which can also be downloaded afterwards. TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. The web application and usage instructions are available at tiba.inf.uni-konstanz.de. The source code is publicly available on GitHub: github.com/LSI-UniKonstanz/tiba.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012425\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012425","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
TIBA: A web application for the visual analysis of temporal occurrences, interactions, and transitions of animal behavior.
Data in behavioral research is often quantified with event-logging software, generating large data sets containing detailed information about subjects, recipients, and the duration of behaviors. Exploring and analyzing such large data sets can be challenging without tools to visualize behavioral interactions between individuals or transitions between behavioral states, yet software that can adequately visualize complex behavioral data sets is rare. TIBA (The Interactive Behavior Analyzer) is a web application for behavioral data visualization, which provides a series of interactive visualizations, including the temporal occurrences of behavioral events, the number and direction of interactions between individuals, the behavioral transitions and their respective transitional frequencies, as well as the visual and algorithmic comparison of the latter across data sets. It can therefore be applied to visualize behavior across individuals, species, or contexts. Several filtering options (selection of behaviors and individuals) together with options to set node and edge properties (in the network drawings) allow for interactive customization of the output drawings, which can also be downloaded afterwards. TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. The web application and usage instructions are available at tiba.inf.uni-konstanz.de. The source code is publicly available on GitHub: github.com/LSI-UniKonstanz/tiba.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.