相分离聚乙烯醇-紫胶混合物的动态光散射微流变学。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-11 DOI:10.3390/polym16202875
Richa Ghosh, Sarah A Bentil, Jaime J Juárez
{"title":"相分离聚乙烯醇-紫胶混合物的动态光散射微流变学。","authors":"Richa Ghosh, Sarah A Bentil, Jaime J Juárez","doi":"10.3390/polym16202875","DOIUrl":null,"url":null,"abstract":"<p><p>In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (<i>w</i>/<i>w</i>) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic Light Scattering Microrheology of Phase-Separated Poly(vinyl) Alcohol-Phytagel Blends.\",\"authors\":\"Richa Ghosh, Sarah A Bentil, Jaime J Juárez\",\"doi\":\"10.3390/polym16202875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (<i>w</i>/<i>w</i>) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16202875\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202875","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了完全由聚(乙烯基)醇(PVA)、Phytagel(PHY)以及不同浓度的二者混合物组成的稀释水凝胶的微流变特性。这些聚合物在生物医学领域都有广泛的应用,如药物输送和晶状体滴注。本研究将样品浓度从 0.15% 调整到 0.3%(w/w),以评估浓度如何影响观察到的流变响应。研究还采用了两种探针尺寸,以检查尺寸的影响并验证连续性假设。两种聚合物混合物的使用揭示了它们的不可溶性和相分离倾向,这一点已得到现有文献的支持。探索微流变结构对于全面了解分子尺度至关重要。选择动态光散射(DLS)是因为其频率范围宽且广泛可用。根据假设,所选的稀释浓度范围属于从麦哲伦介质到非麦哲伦介质的过渡范围。正如文献中强调的那样,在分析过程中正确识别样品的性质--无论其是否为麦格介质--都是至关重要的。所获得的结果清楚地表明,不同探针颗粒大小的存储模量(G')和损耗模量(G″)结果存在重叠,这证实了连续体假设的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Light Scattering Microrheology of Phase-Separated Poly(vinyl) Alcohol-Phytagel Blends.

In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (w/w) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1