{"title":"相分离聚乙烯醇-紫胶混合物的动态光散射微流变学。","authors":"Richa Ghosh, Sarah A Bentil, Jaime J Juárez","doi":"10.3390/polym16202875","DOIUrl":null,"url":null,"abstract":"<p><p>In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (<i>w</i>/<i>w</i>) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic Light Scattering Microrheology of Phase-Separated Poly(vinyl) Alcohol-Phytagel Blends.\",\"authors\":\"Richa Ghosh, Sarah A Bentil, Jaime J Juárez\",\"doi\":\"10.3390/polym16202875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (<i>w</i>/<i>w</i>) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16202875\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202875","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Dynamic Light Scattering Microrheology of Phase-Separated Poly(vinyl) Alcohol-Phytagel Blends.
In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (w/w) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.