影响聚乳酸部件半透明度的熔融丝制造三维打印参数。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-10 DOI:10.3390/polym16202862
Vladimír Vochozka, Pavel Černý, Karel Šramhauser, František Špalek, Pavel Kříž, Jiří Čech, Tomáš Zoubek, Petr Bartoš, Jan Kresan, Radim Stehlík
{"title":"影响聚乳酸部件半透明度的熔融丝制造三维打印参数。","authors":"Vladimír Vochozka, Pavel Černý, Karel Šramhauser, František Špalek, Pavel Kříž, Jiří Čech, Tomáš Zoubek, Petr Bartoš, Jan Kresan, Radim Stehlík","doi":"10.3390/polym16202862","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of 3D printing parameters by Fused Filament Fabrication (FFF) on the translucency of polylactic acid (PLA) parts was investigated. Six different printing parameters were studied: object orientation, layer height, nozzle temperature, fan speed, extrusion multiplier, and printing speed. The commercially available Plasty Mladeč PLA filament and the Original Prusa MK4 3D printer were used for the experiments. The translucency of the printed samples of 50 × 25 × 1 mm dimensions was measured using a luxmeter in an integrating sphere. A total of 32 sample combinations were created. Each sample was printed ten times. The results show that all investigated parameters significantly affect the optical properties of PLA parts. The best measured translucency values were obtained when printing in portrait mode, with a layer height of 0.30 mm, nozzle temperature of 240 °C, fan speed of 100%, 0.75 set extrusion multiplier, and a speed of 40 mm/s. ANOVA was used to statistically evaluate the effect of each parameter on translucency, and statistically significant differences were found between different combinations of parameters (<i>p</i> < 0.05). Scanning Electron Microscope (SEM) analysis provided detailed images of the surface structure of the printed samples, allowing for a better discussion of the microscopic properties affecting the translucency. The best print setting has an efficiency of 88% compared to the default setting of 65%. The ability of visible light to pass through the print (translucency) improved by 23%.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fused Filament Fabrication 3D Printing Parameters Affecting the Translucency of Polylactic Acid Parts.\",\"authors\":\"Vladimír Vochozka, Pavel Černý, Karel Šramhauser, František Špalek, Pavel Kříž, Jiří Čech, Tomáš Zoubek, Petr Bartoš, Jan Kresan, Radim Stehlík\",\"doi\":\"10.3390/polym16202862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of 3D printing parameters by Fused Filament Fabrication (FFF) on the translucency of polylactic acid (PLA) parts was investigated. Six different printing parameters were studied: object orientation, layer height, nozzle temperature, fan speed, extrusion multiplier, and printing speed. The commercially available Plasty Mladeč PLA filament and the Original Prusa MK4 3D printer were used for the experiments. The translucency of the printed samples of 50 × 25 × 1 mm dimensions was measured using a luxmeter in an integrating sphere. A total of 32 sample combinations were created. Each sample was printed ten times. The results show that all investigated parameters significantly affect the optical properties of PLA parts. The best measured translucency values were obtained when printing in portrait mode, with a layer height of 0.30 mm, nozzle temperature of 240 °C, fan speed of 100%, 0.75 set extrusion multiplier, and a speed of 40 mm/s. ANOVA was used to statistically evaluate the effect of each parameter on translucency, and statistically significant differences were found between different combinations of parameters (<i>p</i> < 0.05). Scanning Electron Microscope (SEM) analysis provided detailed images of the surface structure of the printed samples, allowing for a better discussion of the microscopic properties affecting the translucency. The best print setting has an efficiency of 88% compared to the default setting of 65%. The ability of visible light to pass through the print (translucency) improved by 23%.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16202862\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202862","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了熔融长丝制造(FFF)三维打印参数对聚乳酸(PLA)部件半透明度的影响。研究了六种不同的打印参数:对象方向、层高、喷嘴温度、风扇速度、挤出倍率和打印速度。实验使用了市售的 Plasty Mladeč 聚乳酸长丝和 Original Prusa MK4 三维打印机。使用积分球中的照度计测量了 50 × 25 × 1 毫米尺寸的打印样品的透光度。共创建了 32 个样品组合。每个样品打印十次。结果表明,所有研究参数都会对聚乳酸部件的光学特性产生重大影响。在纵向打印模式下,层高为 0.30 毫米、喷嘴温度为 240 °C、风扇速度为 100%、挤出倍率设置为 0.75、速度为 40 毫米/秒时,获得了最佳透光度测量值。采用方差分析对各参数对半透明度的影响进行了统计评估,发现不同参数组合之间存在显著的统计学差异(p < 0.05)。扫描电子显微镜(SEM)分析提供了印刷样品表面结构的详细图像,有助于更好地讨论影响透光率的微观特性。最佳打印设置的效率为 88%,而默认设置为 65%。可见光穿过印刷品的能力(半透明)提高了 23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fused Filament Fabrication 3D Printing Parameters Affecting the Translucency of Polylactic Acid Parts.

The effect of 3D printing parameters by Fused Filament Fabrication (FFF) on the translucency of polylactic acid (PLA) parts was investigated. Six different printing parameters were studied: object orientation, layer height, nozzle temperature, fan speed, extrusion multiplier, and printing speed. The commercially available Plasty Mladeč PLA filament and the Original Prusa MK4 3D printer were used for the experiments. The translucency of the printed samples of 50 × 25 × 1 mm dimensions was measured using a luxmeter in an integrating sphere. A total of 32 sample combinations were created. Each sample was printed ten times. The results show that all investigated parameters significantly affect the optical properties of PLA parts. The best measured translucency values were obtained when printing in portrait mode, with a layer height of 0.30 mm, nozzle temperature of 240 °C, fan speed of 100%, 0.75 set extrusion multiplier, and a speed of 40 mm/s. ANOVA was used to statistically evaluate the effect of each parameter on translucency, and statistically significant differences were found between different combinations of parameters (p < 0.05). Scanning Electron Microscope (SEM) analysis provided detailed images of the surface structure of the printed samples, allowing for a better discussion of the microscopic properties affecting the translucency. The best print setting has an efficiency of 88% compared to the default setting of 65%. The ability of visible light to pass through the print (translucency) improved by 23%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1