{"title":"利用半监督学习和过滤提高 fNIRS 中 HRF 信号的分类准确性。","authors":"Cheng-Hsuan Chen, Kuo-Kai Shyu, Yi-Chao Wu, Chi-Huang Hung, Po-Lei Lee, Chi-Wen Jao","doi":"10.1016/bs.pbr.2024.05.009","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"290 ","pages":"83-104"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing classification accuracy of HRF signals in fNIRS using semi-supervised learning and filtering.\",\"authors\":\"Cheng-Hsuan Chen, Kuo-Kai Shyu, Yi-Chao Wu, Chi-Huang Hung, Po-Lei Lee, Chi-Wen Jao\",\"doi\":\"10.1016/bs.pbr.2024.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.</p>\",\"PeriodicalId\":20598,\"journal\":{\"name\":\"Progress in brain research\",\"volume\":\"290 \",\"pages\":\"83-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in brain research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pbr.2024.05.009\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2024.05.009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
Enhancing classification accuracy of HRF signals in fNIRS using semi-supervised learning and filtering.
This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.
期刊介绍:
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.