玻璃纤维增强聚合物复合材料在吸收塔提升载荷下的性能。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-19 DOI:10.3390/polym16202937
Víctor Tuninetti, Matías Mariqueo
{"title":"玻璃纤维增强聚合物复合材料在吸收塔提升载荷下的性能。","authors":"Víctor Tuninetti, Matías Mariqueo","doi":"10.3390/polym16202937","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the structural integrity of a glass-fiber reinforced polymer absorption tower during lifting operations, evaluating factors of safety and stress distribution for both horizontal and vertical scenarios. A key focus is the comparative analysis of surface and volumetric meshing techniques in finite element modeling. Results demonstrate that surface models achieve comparable stress predictions to computationally intensive volumetric models, significantly reducing computational demands without compromising accuracy. For instance, stress at the flange edge with holes was accurately captured using a surface model with 5675 elements (12.79 MPa), yielding similar results to a volumetric model requiring over 94,000 elements (13.37 MPa). Similar computational efficiency and agreement between modeling approaches were observed at the packing support ring-shell joint. Finite element analysis employing Hashin's failure criterion, informed by industry-standard experimental data, revealed safety factors ranging from 1.9 to 2.5 for horizontal lifting and four for vertical lifting. These safety factors indicate sufficient margins for safe operation. While these findings support the feasibility of both lifting methods, further investigation is recommended to address the lower safety factors observed in specific horizontal lifting scenarios. A comprehensive assessment incorporating industry standards, dynamic load effects, and potential mitigation strategies is crucial to ensure the long-term structural integrity of the GFRP absorption tower.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance of Combined Woven Roving and Mat Glass-Fiber Reinforced Polymer Composites Under Absorption Tower Lifting Loads.\",\"authors\":\"Víctor Tuninetti, Matías Mariqueo\",\"doi\":\"10.3390/polym16202937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the structural integrity of a glass-fiber reinforced polymer absorption tower during lifting operations, evaluating factors of safety and stress distribution for both horizontal and vertical scenarios. A key focus is the comparative analysis of surface and volumetric meshing techniques in finite element modeling. Results demonstrate that surface models achieve comparable stress predictions to computationally intensive volumetric models, significantly reducing computational demands without compromising accuracy. For instance, stress at the flange edge with holes was accurately captured using a surface model with 5675 elements (12.79 MPa), yielding similar results to a volumetric model requiring over 94,000 elements (13.37 MPa). Similar computational efficiency and agreement between modeling approaches were observed at the packing support ring-shell joint. Finite element analysis employing Hashin's failure criterion, informed by industry-standard experimental data, revealed safety factors ranging from 1.9 to 2.5 for horizontal lifting and four for vertical lifting. These safety factors indicate sufficient margins for safe operation. While these findings support the feasibility of both lifting methods, further investigation is recommended to address the lower safety factors observed in specific horizontal lifting scenarios. A comprehensive assessment incorporating industry standards, dynamic load effects, and potential mitigation strategies is crucial to ensure the long-term structural integrity of the GFRP absorption tower.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16202937\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202937","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了玻璃纤维增强聚合物吸收塔在吊装过程中的结构完整性,评估了水平和垂直情况下的安全系数和应力分布。重点是对有限元建模中的曲面网格划分技术和体积网格划分技术进行比较分析。结果表明,曲面模型可实现与计算密集型体积模型相当的应力预测,在不影响精度的情况下大大降低了计算需求。例如,使用 5675 个元素(12.79 兆帕)的曲面模型可以准确捕捉带孔凸缘边缘的应力,其结果与需要 94,000 多个元素(13.37 兆帕)的体积模型相似。在填料支撑环-壳连接处也观察到了类似的计算效率和建模方法之间的一致性。根据行业标准实验数据,采用 Hashin 失效标准进行的有限元分析表明,水平提升的安全系数为 1.9 至 2.5,垂直提升的安全系数为 4。这些安全系数表明有足够的安全运行余量。虽然这些研究结果支持这两种提升方法的可行性,但建议进一步调查,以解决在特定水平提升情况下观察到的较低安全系数问题。要确保 GFRP 吸收塔的长期结构完整性,结合行业标准、动态载荷效应和潜在的缓解策略进行综合评估至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of Combined Woven Roving and Mat Glass-Fiber Reinforced Polymer Composites Under Absorption Tower Lifting Loads.

This study investigates the structural integrity of a glass-fiber reinforced polymer absorption tower during lifting operations, evaluating factors of safety and stress distribution for both horizontal and vertical scenarios. A key focus is the comparative analysis of surface and volumetric meshing techniques in finite element modeling. Results demonstrate that surface models achieve comparable stress predictions to computationally intensive volumetric models, significantly reducing computational demands without compromising accuracy. For instance, stress at the flange edge with holes was accurately captured using a surface model with 5675 elements (12.79 MPa), yielding similar results to a volumetric model requiring over 94,000 elements (13.37 MPa). Similar computational efficiency and agreement between modeling approaches were observed at the packing support ring-shell joint. Finite element analysis employing Hashin's failure criterion, informed by industry-standard experimental data, revealed safety factors ranging from 1.9 to 2.5 for horizontal lifting and four for vertical lifting. These safety factors indicate sufficient margins for safe operation. While these findings support the feasibility of both lifting methods, further investigation is recommended to address the lower safety factors observed in specific horizontal lifting scenarios. A comprehensive assessment incorporating industry standards, dynamic load effects, and potential mitigation strategies is crucial to ensure the long-term structural integrity of the GFRP absorption tower.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1