聚丁二烯液体橡胶改性白炭黑增强苯乙烯-丁二烯橡胶的研究

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-10 DOI:10.3390/polym16202866
Qing Liao, Xiao Tang, Jiao Tang, Jiaxiang Tang, Housheng Xia, Zhongyi Sheng, Jianping Zhou, Junfeng Niu
{"title":"聚丁二烯液体橡胶改性白炭黑增强苯乙烯-丁二烯橡胶的研究","authors":"Qing Liao, Xiao Tang, Jiao Tang, Jiaxiang Tang, Housheng Xia, Zhongyi Sheng, Jianping Zhou, Junfeng Niu","doi":"10.3390/polym16202866","DOIUrl":null,"url":null,"abstract":"<p><p>The dispersion of silica in rubber systems and its interaction with rubber are two key factors in the preparation of rubber composites with excellent properties. In view of this, silica modified with terminal isocyanate-based polybutadiene liquid rubber (ITPB) is used to improve the dispersion effect of silica in rubber and enhance its interaction with the rubber matrix to improve the rubber's performance. The impact of different modification conditions on the dispersion of silica and the properties of modified silica-filled rubber composites were studied by changing the amount of ITPB and the modification method of silica, including blending and chemical grafting. The experimental results show that ITPB is successfully grafted onto silica, and the use of modified silica improves the cross-linking density of rubber, promotes the rate of rubber vulcanization, and overcomes the shortcomings of the delayed vulcanization of silica itself. When the ratio of ITPB liquid rubber to silica equals 1:20, the comprehensive performance of rubber is the best, the ITPB-modified silica has a better dispersion effect in rubber, and the rolling resistance is slightly improved, with tensile strength reaching 12.6 MPa. The material demonstrates excellent overall performance and holds promise for applications in the rail, automotive, and electrical fields.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511095/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study of Styrene Butadiene Rubber Reinforced by Polybutadiene Liquid Rubber-Modified Silica.\",\"authors\":\"Qing Liao, Xiao Tang, Jiao Tang, Jiaxiang Tang, Housheng Xia, Zhongyi Sheng, Jianping Zhou, Junfeng Niu\",\"doi\":\"10.3390/polym16202866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dispersion of silica in rubber systems and its interaction with rubber are two key factors in the preparation of rubber composites with excellent properties. In view of this, silica modified with terminal isocyanate-based polybutadiene liquid rubber (ITPB) is used to improve the dispersion effect of silica in rubber and enhance its interaction with the rubber matrix to improve the rubber's performance. The impact of different modification conditions on the dispersion of silica and the properties of modified silica-filled rubber composites were studied by changing the amount of ITPB and the modification method of silica, including blending and chemical grafting. The experimental results show that ITPB is successfully grafted onto silica, and the use of modified silica improves the cross-linking density of rubber, promotes the rate of rubber vulcanization, and overcomes the shortcomings of the delayed vulcanization of silica itself. When the ratio of ITPB liquid rubber to silica equals 1:20, the comprehensive performance of rubber is the best, the ITPB-modified silica has a better dispersion effect in rubber, and the rolling resistance is slightly improved, with tensile strength reaching 12.6 MPa. The material demonstrates excellent overall performance and holds promise for applications in the rail, automotive, and electrical fields.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16202866\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202866","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

白炭黑在橡胶体系中的分散及其与橡胶的相互作用是制备具有优异性能的橡胶复合材料的两个关键因素。有鉴于此,使用端异氰酸酯基聚丁二烯液体橡胶(ITPB)改性白炭黑可改善白炭黑在橡胶中的分散效果,并增强其与橡胶基体的相互作用,从而改善橡胶的性能。通过改变 ITPB 的用量和白炭黑的改性方法(包括共混和化学接枝),研究了不同改性条件对白炭黑分散性和改性白炭黑填充橡胶复合材料性能的影响。实验结果表明,ITPB 成功接枝到白炭黑上,改性白炭黑的使用提高了橡胶的交联密度,促进了橡胶的硫化速度,克服了白炭黑本身延迟硫化的缺点。当 ITPB 液体橡胶与白炭黑的比例为 1:20 时,橡胶的综合性能最好,ITPB 改性白炭黑在橡胶中的分散效果更好,滚动阻力略有改善,拉伸强度达到 12.6 兆帕。该材料具有优异的综合性能,有望应用于铁路、汽车和电气领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Styrene Butadiene Rubber Reinforced by Polybutadiene Liquid Rubber-Modified Silica.

The dispersion of silica in rubber systems and its interaction with rubber are two key factors in the preparation of rubber composites with excellent properties. In view of this, silica modified with terminal isocyanate-based polybutadiene liquid rubber (ITPB) is used to improve the dispersion effect of silica in rubber and enhance its interaction with the rubber matrix to improve the rubber's performance. The impact of different modification conditions on the dispersion of silica and the properties of modified silica-filled rubber composites were studied by changing the amount of ITPB and the modification method of silica, including blending and chemical grafting. The experimental results show that ITPB is successfully grafted onto silica, and the use of modified silica improves the cross-linking density of rubber, promotes the rate of rubber vulcanization, and overcomes the shortcomings of the delayed vulcanization of silica itself. When the ratio of ITPB liquid rubber to silica equals 1:20, the comprehensive performance of rubber is the best, the ITPB-modified silica has a better dispersion effect in rubber, and the rolling resistance is slightly improved, with tensile strength reaching 12.6 MPa. The material demonstrates excellent overall performance and holds promise for applications in the rail, automotive, and electrical fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1