Jun Miao, Liubing Bu, Wenchen Tan, Ping Wang, Xiangbo Li, Xianfeng Li, Chuyan Chen, Kunming Zhang, Wenle Shen, Zhiyun Gong, Gulinaer Bahetibieke, Lei Ren, Guohua Liang, Yong Zhou
{"title":"脱落酸信号途径中的负调控因子 OsPP2C49 能积极调节水稻的谷粒产量。","authors":"Jun Miao, Liubing Bu, Wenchen Tan, Ping Wang, Xiangbo Li, Xianfeng Li, Chuyan Chen, Kunming Zhang, Wenle Shen, Zhiyun Gong, Gulinaer Bahetibieke, Lei Ren, Guohua Liang, Yong Zhou","doi":"10.1186/s12284-024-00746-4","DOIUrl":null,"url":null,"abstract":"<p><p>Clade A type 2C protein phosphatases (PP2Cs) are crucial components of the abscisic acid (ABA) signaling pathway. Research on clade A PP2Cs has focused more on their roles related to ABA signaling and stress responses than on the molecular mechanisms mediating their effects on plant growth and grain yield. Rice (Oryza sativa L.) is an important food crop worldwide. We previously determined that OsPP2C49, which encodes a rice clade A PP2C family member, negatively controls rice responses to drought, salt, and high-temperature stresses. In this study, we investigated the regulatory effects of OsPP2C49 on ABA responses and rice grain yield. By analyzing potential interactions with core ABA components, including pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of the ABA receptor (RCAR) and stress-activated protein kinases (SAPKs), we confirmed that OsPP2C49 is involved in the ABA signaling pathway. OsPP2C49 overexpression led to decreased ABA sensitivity and increased rice grain yield; the opposite phenotypes were observed in the ospp2c49 knockout mutants. Therefore, OsPP2C49 negatively regulates ABA responses, but positively modulates rice grain yield. Furthermore, we found that OsPP2C49 can interact with and dephosphorylate five OsSAPKs in vitro. Unlike OsPP2C49, these OsSAPKs positively modulate ABA responsiveness, but negatively affect rice yield. These findings indicate that OsPP2C49 may partially regulate ABA responses and rice grain production by dephosphorylating OsSAPKs. This study preliminarily explored the molecular basis of the regulatory effects of OsPP2C49 on rice plant growth and grain yield.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"65"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496423/pdf/","citationCount":"0","resultStr":"{\"title\":\"OsPP2C49, a Negative Regulatory Factor in the Abscisic Acid Signaling Pathway, Positively Regulates Grain Yield in Rice.\",\"authors\":\"Jun Miao, Liubing Bu, Wenchen Tan, Ping Wang, Xiangbo Li, Xianfeng Li, Chuyan Chen, Kunming Zhang, Wenle Shen, Zhiyun Gong, Gulinaer Bahetibieke, Lei Ren, Guohua Liang, Yong Zhou\",\"doi\":\"10.1186/s12284-024-00746-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clade A type 2C protein phosphatases (PP2Cs) are crucial components of the abscisic acid (ABA) signaling pathway. Research on clade A PP2Cs has focused more on their roles related to ABA signaling and stress responses than on the molecular mechanisms mediating their effects on plant growth and grain yield. Rice (Oryza sativa L.) is an important food crop worldwide. We previously determined that OsPP2C49, which encodes a rice clade A PP2C family member, negatively controls rice responses to drought, salt, and high-temperature stresses. In this study, we investigated the regulatory effects of OsPP2C49 on ABA responses and rice grain yield. By analyzing potential interactions with core ABA components, including pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of the ABA receptor (RCAR) and stress-activated protein kinases (SAPKs), we confirmed that OsPP2C49 is involved in the ABA signaling pathway. OsPP2C49 overexpression led to decreased ABA sensitivity and increased rice grain yield; the opposite phenotypes were observed in the ospp2c49 knockout mutants. Therefore, OsPP2C49 negatively regulates ABA responses, but positively modulates rice grain yield. Furthermore, we found that OsPP2C49 can interact with and dephosphorylate five OsSAPKs in vitro. Unlike OsPP2C49, these OsSAPKs positively modulate ABA responsiveness, but negatively affect rice yield. These findings indicate that OsPP2C49 may partially regulate ABA responses and rice grain production by dephosphorylating OsSAPKs. This study preliminarily explored the molecular basis of the regulatory effects of OsPP2C49 on rice plant growth and grain yield.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"17 1\",\"pages\":\"65\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-024-00746-4\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-024-00746-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
摘要
A 族 2C 型蛋白磷酸酶(PP2Cs)是脱落酸(ABA)信号通路的重要组成部分。对 A 族 PP2Cs 的研究更多地集中在它们与 ABA 信号传导和胁迫反应有关的作用上,而不是研究介导它们对植物生长和谷物产量影响的分子机制。水稻(Oryza sativa L.)是世界上重要的粮食作物。我们之前发现,编码水稻 A 族 PP2C 家族成员的 OsPP2C49 负向控制水稻对干旱、盐和高温胁迫的响应。在本研究中,我们研究了 OsPP2C49 对 ABA 反应和水稻谷粒产量的调控作用。通过分析OsPP2C49与ABA核心组分(包括吡拉菌素抗性1(PYR1)/PYR1-like(PYL)/ABA受体调节组分(RCAR)和胁迫激活蛋白激酶(SAPKs))的潜在相互作用,我们证实OsPP2C49参与了ABA信号通路。OsPP2C49 的过表达导致水稻对 ABA 的敏感性降低,谷粒产量增加;在 ospp2c49 基因敲除突变体中观察到了相反的表型。因此,OsPP2C49 负向调节 ABA 反应,但正向调节水稻谷粒产量。此外,我们还发现 OsPP2C49 能与五种 OsSAPKs 相互作用并在体外使其去磷酸化。与 OsPP2C49 不同的是,这些 OsSAPKs 对 ABA 反应性有正向调节作用,但对水稻产量有负向影响。这些发现表明,OsPP2C49 可能通过使 OsSAPKs 去磷酸化来部分调节 ABA 反应和水稻谷粒产量。本研究初步探讨了 OsPP2C49 对水稻植株生长和谷物产量调控作用的分子基础。
OsPP2C49, a Negative Regulatory Factor in the Abscisic Acid Signaling Pathway, Positively Regulates Grain Yield in Rice.
Clade A type 2C protein phosphatases (PP2Cs) are crucial components of the abscisic acid (ABA) signaling pathway. Research on clade A PP2Cs has focused more on their roles related to ABA signaling and stress responses than on the molecular mechanisms mediating their effects on plant growth and grain yield. Rice (Oryza sativa L.) is an important food crop worldwide. We previously determined that OsPP2C49, which encodes a rice clade A PP2C family member, negatively controls rice responses to drought, salt, and high-temperature stresses. In this study, we investigated the regulatory effects of OsPP2C49 on ABA responses and rice grain yield. By analyzing potential interactions with core ABA components, including pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of the ABA receptor (RCAR) and stress-activated protein kinases (SAPKs), we confirmed that OsPP2C49 is involved in the ABA signaling pathway. OsPP2C49 overexpression led to decreased ABA sensitivity and increased rice grain yield; the opposite phenotypes were observed in the ospp2c49 knockout mutants. Therefore, OsPP2C49 negatively regulates ABA responses, but positively modulates rice grain yield. Furthermore, we found that OsPP2C49 can interact with and dephosphorylate five OsSAPKs in vitro. Unlike OsPP2C49, these OsSAPKs positively modulate ABA responsiveness, but negatively affect rice yield. These findings indicate that OsPP2C49 may partially regulate ABA responses and rice grain production by dephosphorylating OsSAPKs. This study preliminarily explored the molecular basis of the regulatory effects of OsPP2C49 on rice plant growth and grain yield.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.