Fuyu Guo, David M Zucker, Kenneth I Vaden, Sharon Curhan, Judy R Dubno, Molin Wang
{"title":"用于相关听力数据的新型二次判别分析算法","authors":"Fuyu Guo, David M Zucker, Kenneth I Vaden, Sharon Curhan, Judy R Dubno, Molin Wang","doi":"10.1002/sim.10257","DOIUrl":null,"url":null,"abstract":"<p><p>Paired organs like eyes, ears, and lungs in humans exhibit similarities, and data from these organs often display remarkable correlations. Accounting for these correlations could enhance classification models used in predicting disease phenotypes. To our knowledge, there is limited, if any, literature addressing this topic, and existing methods do not exploit such correlations. For example, the conventional approach treats each ear as an independent observation when predicting audiometric phenotypes and is agnostic about the correlation of data from the two ears of the same person. This approach may lead to information loss and reduce the model performance. In response to this gap, particularly in the context of audiometric phenotype prediction, this paper proposes new quadratic discriminant analysis (QDA) algorithms that appropriately deal with the dependence between ears. We propose two-stage analysis strategies: (1) conducting data transformations to reduce data dimensionality before applying QDA; and (2) developing new QDA algorithms to partially utilize the dependence between phenotypes of two ears. We conducted simulation studies to compare different transformation methods and to assess the performance of different QDA algorithms. The empirical results suggested that the transformation may only be beneficial when the sample size is relatively small. Moreover, our proposed new QDA algorithms performed better than the conventional approach in both person-level and ear-level accuracy. As an illustration, we applied them to audiometric data from the Medical University of South Carolina Longitudinal Cohort Study of Age-related Hearing Loss. In addition, we developed an R package, PairQDA, to implement the proposed algorithms.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5473-5483"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Quadratic Discriminant Analysis Algorithms for Correlated Audiometric Data.\",\"authors\":\"Fuyu Guo, David M Zucker, Kenneth I Vaden, Sharon Curhan, Judy R Dubno, Molin Wang\",\"doi\":\"10.1002/sim.10257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paired organs like eyes, ears, and lungs in humans exhibit similarities, and data from these organs often display remarkable correlations. Accounting for these correlations could enhance classification models used in predicting disease phenotypes. To our knowledge, there is limited, if any, literature addressing this topic, and existing methods do not exploit such correlations. For example, the conventional approach treats each ear as an independent observation when predicting audiometric phenotypes and is agnostic about the correlation of data from the two ears of the same person. This approach may lead to information loss and reduce the model performance. In response to this gap, particularly in the context of audiometric phenotype prediction, this paper proposes new quadratic discriminant analysis (QDA) algorithms that appropriately deal with the dependence between ears. We propose two-stage analysis strategies: (1) conducting data transformations to reduce data dimensionality before applying QDA; and (2) developing new QDA algorithms to partially utilize the dependence between phenotypes of two ears. We conducted simulation studies to compare different transformation methods and to assess the performance of different QDA algorithms. The empirical results suggested that the transformation may only be beneficial when the sample size is relatively small. Moreover, our proposed new QDA algorithms performed better than the conventional approach in both person-level and ear-level accuracy. As an illustration, we applied them to audiometric data from the Medical University of South Carolina Longitudinal Cohort Study of Age-related Hearing Loss. In addition, we developed an R package, PairQDA, to implement the proposed algorithms.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"5473-5483\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10257\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10257","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
New Quadratic Discriminant Analysis Algorithms for Correlated Audiometric Data.
Paired organs like eyes, ears, and lungs in humans exhibit similarities, and data from these organs often display remarkable correlations. Accounting for these correlations could enhance classification models used in predicting disease phenotypes. To our knowledge, there is limited, if any, literature addressing this topic, and existing methods do not exploit such correlations. For example, the conventional approach treats each ear as an independent observation when predicting audiometric phenotypes and is agnostic about the correlation of data from the two ears of the same person. This approach may lead to information loss and reduce the model performance. In response to this gap, particularly in the context of audiometric phenotype prediction, this paper proposes new quadratic discriminant analysis (QDA) algorithms that appropriately deal with the dependence between ears. We propose two-stage analysis strategies: (1) conducting data transformations to reduce data dimensionality before applying QDA; and (2) developing new QDA algorithms to partially utilize the dependence between phenotypes of two ears. We conducted simulation studies to compare different transformation methods and to assess the performance of different QDA algorithms. The empirical results suggested that the transformation may only be beneficial when the sample size is relatively small. Moreover, our proposed new QDA algorithms performed better than the conventional approach in both person-level and ear-level accuracy. As an illustration, we applied them to audiometric data from the Medical University of South Carolina Longitudinal Cohort Study of Age-related Hearing Loss. In addition, we developed an R package, PairQDA, to implement the proposed algorithms.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.