用于相关听力数据的新型二次判别分析算法

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-12-20 Epub Date: 2024-10-25 DOI:10.1002/sim.10257
Fuyu Guo, David M Zucker, Kenneth I Vaden, Sharon Curhan, Judy R Dubno, Molin Wang
{"title":"用于相关听力数据的新型二次判别分析算法","authors":"Fuyu Guo, David M Zucker, Kenneth I Vaden, Sharon Curhan, Judy R Dubno, Molin Wang","doi":"10.1002/sim.10257","DOIUrl":null,"url":null,"abstract":"<p><p>Paired organs like eyes, ears, and lungs in humans exhibit similarities, and data from these organs often display remarkable correlations. Accounting for these correlations could enhance classification models used in predicting disease phenotypes. To our knowledge, there is limited, if any, literature addressing this topic, and existing methods do not exploit such correlations. For example, the conventional approach treats each ear as an independent observation when predicting audiometric phenotypes and is agnostic about the correlation of data from the two ears of the same person. This approach may lead to information loss and reduce the model performance. In response to this gap, particularly in the context of audiometric phenotype prediction, this paper proposes new quadratic discriminant analysis (QDA) algorithms that appropriately deal with the dependence between ears. We propose two-stage analysis strategies: (1) conducting data transformations to reduce data dimensionality before applying QDA; and (2) developing new QDA algorithms to partially utilize the dependence between phenotypes of two ears. We conducted simulation studies to compare different transformation methods and to assess the performance of different QDA algorithms. The empirical results suggested that the transformation may only be beneficial when the sample size is relatively small. Moreover, our proposed new QDA algorithms performed better than the conventional approach in both person-level and ear-level accuracy. As an illustration, we applied them to audiometric data from the Medical University of South Carolina Longitudinal Cohort Study of Age-related Hearing Loss. In addition, we developed an R package, PairQDA, to implement the proposed algorithms.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5473-5483"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Quadratic Discriminant Analysis Algorithms for Correlated Audiometric Data.\",\"authors\":\"Fuyu Guo, David M Zucker, Kenneth I Vaden, Sharon Curhan, Judy R Dubno, Molin Wang\",\"doi\":\"10.1002/sim.10257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paired organs like eyes, ears, and lungs in humans exhibit similarities, and data from these organs often display remarkable correlations. Accounting for these correlations could enhance classification models used in predicting disease phenotypes. To our knowledge, there is limited, if any, literature addressing this topic, and existing methods do not exploit such correlations. For example, the conventional approach treats each ear as an independent observation when predicting audiometric phenotypes and is agnostic about the correlation of data from the two ears of the same person. This approach may lead to information loss and reduce the model performance. In response to this gap, particularly in the context of audiometric phenotype prediction, this paper proposes new quadratic discriminant analysis (QDA) algorithms that appropriately deal with the dependence between ears. We propose two-stage analysis strategies: (1) conducting data transformations to reduce data dimensionality before applying QDA; and (2) developing new QDA algorithms to partially utilize the dependence between phenotypes of two ears. We conducted simulation studies to compare different transformation methods and to assess the performance of different QDA algorithms. The empirical results suggested that the transformation may only be beneficial when the sample size is relatively small. Moreover, our proposed new QDA algorithms performed better than the conventional approach in both person-level and ear-level accuracy. As an illustration, we applied them to audiometric data from the Medical University of South Carolina Longitudinal Cohort Study of Age-related Hearing Loss. In addition, we developed an R package, PairQDA, to implement the proposed algorithms.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"5473-5483\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10257\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10257","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类的眼睛、耳朵和肺等成对器官具有相似性,这些器官的数据往往显示出显著的相关性。考虑这些相关性可以增强用于预测疾病表型的分类模型。据我们所知,涉及这一主题的文献即使有也很有限,而且现有的方法也没有利用这些相关性。例如,在预测听力表型时,传统方法将每只耳朵视为独立的观察对象,而不考虑同一人两只耳朵数据的相关性。这种方法可能会导致信息丢失,降低模型性能。针对这一缺陷,特别是在听力表型预测方面,本文提出了新的二次判别分析(QDA)算法,以适当处理耳朵之间的依赖关系。我们提出了两个阶段的分析策略:(1)在应用 QDA 之前进行数据转换以降低数据维度;(2)开发新的 QDA 算法以部分利用双耳表型之间的依赖性。我们进行了模拟研究,比较了不同的转换方法,并评估了不同 QDA 算法的性能。实证结果表明,只有当样本量相对较小时,转换才可能是有益的。此外,我们提出的新 QDA 算法在人和耳的准确性方面都优于传统方法。作为说明,我们将其应用于南卡罗来纳医科大学老年性听力损失纵向队列研究的听力数据。此外,我们还开发了一个 R 软件包 PairQDA 来实现所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Quadratic Discriminant Analysis Algorithms for Correlated Audiometric Data.

Paired organs like eyes, ears, and lungs in humans exhibit similarities, and data from these organs often display remarkable correlations. Accounting for these correlations could enhance classification models used in predicting disease phenotypes. To our knowledge, there is limited, if any, literature addressing this topic, and existing methods do not exploit such correlations. For example, the conventional approach treats each ear as an independent observation when predicting audiometric phenotypes and is agnostic about the correlation of data from the two ears of the same person. This approach may lead to information loss and reduce the model performance. In response to this gap, particularly in the context of audiometric phenotype prediction, this paper proposes new quadratic discriminant analysis (QDA) algorithms that appropriately deal with the dependence between ears. We propose two-stage analysis strategies: (1) conducting data transformations to reduce data dimensionality before applying QDA; and (2) developing new QDA algorithms to partially utilize the dependence between phenotypes of two ears. We conducted simulation studies to compare different transformation methods and to assess the performance of different QDA algorithms. The empirical results suggested that the transformation may only be beneficial when the sample size is relatively small. Moreover, our proposed new QDA algorithms performed better than the conventional approach in both person-level and ear-level accuracy. As an illustration, we applied them to audiometric data from the Medical University of South Carolina Longitudinal Cohort Study of Age-related Hearing Loss. In addition, we developed an R package, PairQDA, to implement the proposed algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
Bayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data. Matching-Assisted Power Prior for Incorporating Real-World Data in Randomized Clinical Trial Analysis. Multiple Imputation for Longitudinal Data: A Tutorial. Reverse Time-to-Death as Time-Scale in Time-to-Event Analysis for Studies of Advanced Illness and Palliative Care. A Bayesian Multivariate Model With Temporal Dependence on Random Partition of Areal Data for Mosquito-Borne Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1