{"title":"从一名因 MPV17 基因同源 c.122G > A p.(Arg41Gln) 突变而患 Charcot-Marie-Tooth 病 2EE 型 (CMT2EE) 的患者身上建立人类诱导多能干细胞 (iPSC) 株 (JUCTCi018-A)。","authors":"","doi":"10.1016/j.scr.2024.103602","DOIUrl":null,"url":null,"abstract":"<div><div><em>(</em>Charcot-Marie-Tooth disease (CMT) is a genetic disorder affecting peripheral nerves. The human induced pluripotent stem cell (iPSC) line JUCTCi018-A was created using dermal fibroblasts from a Charcot-Marie-Tooth disease type 2EE (CMT2EE) patient with a homozygous missense mutation in the MPV17 gene (c. 122G > A, p.Arg41Gln). These fibroblasts were reprogrammed using Sendai viruses that encoded OCT4, SOX2, KLF4, and c-MYC reprogramming factors. The iPSCs demonstrated normal morphology and karyotype, expressed pluripotency markers, and the ability to differentiate into the three germ layers. This iPSC line is valuable for investigating the mechanisms underlying CMT2EE.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of a human induced pluripotent stem cell (iPSC) line (JUCTCi018-A) from a patient with Charcot-Marie-Tooth disease type 2EE (CMT2EE) due to a homozygous c.122G > A p.(Arg41Gln) mutation in the MPV17 gene\",\"authors\":\"\",\"doi\":\"10.1016/j.scr.2024.103602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>(</em>Charcot-Marie-Tooth disease (CMT) is a genetic disorder affecting peripheral nerves. The human induced pluripotent stem cell (iPSC) line JUCTCi018-A was created using dermal fibroblasts from a Charcot-Marie-Tooth disease type 2EE (CMT2EE) patient with a homozygous missense mutation in the MPV17 gene (c. 122G > A, p.Arg41Gln). These fibroblasts were reprogrammed using Sendai viruses that encoded OCT4, SOX2, KLF4, and c-MYC reprogramming factors. The iPSCs demonstrated normal morphology and karyotype, expressed pluripotency markers, and the ability to differentiate into the three germ layers. This iPSC line is valuable for investigating the mechanisms underlying CMT2EE.</div></div>\",\"PeriodicalId\":21843,\"journal\":{\"name\":\"Stem cell research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873506124003003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124003003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Establishment of a human induced pluripotent stem cell (iPSC) line (JUCTCi018-A) from a patient with Charcot-Marie-Tooth disease type 2EE (CMT2EE) due to a homozygous c.122G > A p.(Arg41Gln) mutation in the MPV17 gene
(Charcot-Marie-Tooth disease (CMT) is a genetic disorder affecting peripheral nerves. The human induced pluripotent stem cell (iPSC) line JUCTCi018-A was created using dermal fibroblasts from a Charcot-Marie-Tooth disease type 2EE (CMT2EE) patient with a homozygous missense mutation in the MPV17 gene (c. 122G > A, p.Arg41Gln). These fibroblasts were reprogrammed using Sendai viruses that encoded OCT4, SOX2, KLF4, and c-MYC reprogramming factors. The iPSCs demonstrated normal morphology and karyotype, expressed pluripotency markers, and the ability to differentiate into the three germ layers. This iPSC line is valuable for investigating the mechanisms underlying CMT2EE.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.