{"title":"使用各种多胺功能化的硅基吸附剂高效去除水溶液中的铀。","authors":"Ping Zhang, Hongling Wang, Lifeng Chen, Wenlong Li, Toyohisa Fujita, Shunyan Ning, Yuezhou Wei","doi":"10.3390/toxics12100704","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins-SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA (TETA: triethylenetetramine), and SiPMA-TEPA (TEPA: tetraethylenepentamine)-were successfully prepared, characterized, and evaluated in batch experiments. Characterization results showed that the silica-based polyamine resins were successfully prepared, and they exhibited a uniform shape and high specific surface area. SiPMA-DETA, SiPMA-TETA, and SiPMA-TEPA had nitrogen contents of 4.08%, 3.72%, and 4.26%, respectively. Batch experiments indicated that these adsorbents could efficiently remove uranium from aqueous solutions with a pH of 5-9. The adsorption kinetics of U(VI) were consistent with the pseudo-second-order model, indicating that the adsorption process was chemisorption and that adsorption equilibrium was achieved within 10 min. SiPMA-TEPA, with the longest polyamine chain, exhibited the highest adsorption capacity (>198.95 mg/g), while SiPMA-DETA, with the shortest polyamine chain, demonstrated the highest U(VI) adsorption efficiency (83%) with 100 mM Na<sub>2</sub>SO<sub>4</sub>. SiPMA-TEPA still removed over 90% of U(VI) from river water and tap water. The spectral analysis revealed that the N-containing functional groups on the ligand were bound to anionic uranium-carbonate species and possibly contributed to the adsorption efficiency. In general, this work presents three effective adsorbents for removing uranium from environmental water systems and thus significantly contributes to the field of environmental protection.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510947/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Uranium Removal from Aqueous Solutions Using Silica-Based Adsorbents Functionalized with Various Polyamines.\",\"authors\":\"Ping Zhang, Hongling Wang, Lifeng Chen, Wenlong Li, Toyohisa Fujita, Shunyan Ning, Yuezhou Wei\",\"doi\":\"10.3390/toxics12100704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins-SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA (TETA: triethylenetetramine), and SiPMA-TEPA (TEPA: tetraethylenepentamine)-were successfully prepared, characterized, and evaluated in batch experiments. Characterization results showed that the silica-based polyamine resins were successfully prepared, and they exhibited a uniform shape and high specific surface area. SiPMA-DETA, SiPMA-TETA, and SiPMA-TEPA had nitrogen contents of 4.08%, 3.72%, and 4.26%, respectively. Batch experiments indicated that these adsorbents could efficiently remove uranium from aqueous solutions with a pH of 5-9. The adsorption kinetics of U(VI) were consistent with the pseudo-second-order model, indicating that the adsorption process was chemisorption and that adsorption equilibrium was achieved within 10 min. SiPMA-TEPA, with the longest polyamine chain, exhibited the highest adsorption capacity (>198.95 mg/g), while SiPMA-DETA, with the shortest polyamine chain, demonstrated the highest U(VI) adsorption efficiency (83%) with 100 mM Na<sub>2</sub>SO<sub>4</sub>. SiPMA-TEPA still removed over 90% of U(VI) from river water and tap water. The spectral analysis revealed that the N-containing functional groups on the ligand were bound to anionic uranium-carbonate species and possibly contributed to the adsorption efficiency. In general, this work presents three effective adsorbents for removing uranium from environmental water systems and thus significantly contributes to the field of environmental protection.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100704\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100704","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Efficient Uranium Removal from Aqueous Solutions Using Silica-Based Adsorbents Functionalized with Various Polyamines.
With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins-SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA (TETA: triethylenetetramine), and SiPMA-TEPA (TEPA: tetraethylenepentamine)-were successfully prepared, characterized, and evaluated in batch experiments. Characterization results showed that the silica-based polyamine resins were successfully prepared, and they exhibited a uniform shape and high specific surface area. SiPMA-DETA, SiPMA-TETA, and SiPMA-TEPA had nitrogen contents of 4.08%, 3.72%, and 4.26%, respectively. Batch experiments indicated that these adsorbents could efficiently remove uranium from aqueous solutions with a pH of 5-9. The adsorption kinetics of U(VI) were consistent with the pseudo-second-order model, indicating that the adsorption process was chemisorption and that adsorption equilibrium was achieved within 10 min. SiPMA-TEPA, with the longest polyamine chain, exhibited the highest adsorption capacity (>198.95 mg/g), while SiPMA-DETA, with the shortest polyamine chain, demonstrated the highest U(VI) adsorption efficiency (83%) with 100 mM Na2SO4. SiPMA-TEPA still removed over 90% of U(VI) from river water and tap water. The spectral analysis revealed that the N-containing functional groups on the ligand were bound to anionic uranium-carbonate species and possibly contributed to the adsorption efficiency. In general, this work presents three effective adsorbents for removing uranium from environmental water systems and thus significantly contributes to the field of environmental protection.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.