Elveda Gozdas, Bárbara Avelar-Pereira, Hannah Fingerhut, Lauren Dacorro, Booil Jo, Leanne Williams, Ruth O'Hara, S M Hadi Hosseini
{"title":"长期认知训练可增强 MCI 患者的流体认知能力和大脑连通性。","authors":"Elveda Gozdas, Bárbara Avelar-Pereira, Hannah Fingerhut, Lauren Dacorro, Booil Jo, Leanne Williams, Ruth O'Hara, S M Hadi Hosseini","doi":"10.1038/s41398-024-03153-x","DOIUrl":null,"url":null,"abstract":"<p><p>Amnestic mild cognitive impairment (aMCI) is a risk factor for Alzheimer's disease (AD). Multi-domain cognitive training (CT) may slow cognitive decline and delay AD onset. However, most work involves short interventions, targeting single cognitive domains or lacking active controls. We conducted a single-blind randomized controlled trial to investigate the effect of a 6-month, multi-domain CT on Fluid Cognition, functional connectivity in memory and executive functioning networks (primary outcomes), and white matter microstructural properties (secondary outcome) in aMCI. Sixty participants were randomly assigned to either a multi-domain CT or crossword training (CW) group, and thirty-four participants completed the intervention. We found a significant group-by-time interaction in Fluid Cognition (p = 0.007, F (1,28) = 8.26, Cohen's d = 0.38, 95% confidence interval [CI]: 2.45-14.4), with 90% of CT patients showing post-intervention improvements (p < 0.01, Cohen's d = 0.7). The CT group also showed better post-intervention Fluid Cognition than healthy controls (HCs, N = 45, p = 0.045). Functional connectivity analyses showed a significant group-by-time interaction (Cohen's d ≥ 0.8) in the dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex (IPC) networks. Specifically, CT displayed post-intervention increases whereas CW displayed decreases in functional connectivity. Moreover, increased connectivity strength between the left DLPFC and medial PFC was associated with improved Fluid Cognition. At a microstructural level, we observed a decline in fiber density (FD) for both groups, but the CT group declined less steeply (1.3 vs. 2%). The slower decline in FD for the CT group in several tracts, including the cingulum-hippocampus tract, was associated with better working memory. Finally, we identified regions in cognitive control and memory networks for which baseline functional connectivity and microstructural properties were associated with changes in Fluid Cognition. Long-term, multi-domain CT improves cognitive functioning and functional connectivity and delays structural brain decline in aMCI (ClinicalTrials.gov number: NCT03883308).</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"447"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-term cognitive training enhances fluid cognition and brain connectivity in individuals with MCI.\",\"authors\":\"Elveda Gozdas, Bárbara Avelar-Pereira, Hannah Fingerhut, Lauren Dacorro, Booil Jo, Leanne Williams, Ruth O'Hara, S M Hadi Hosseini\",\"doi\":\"10.1038/s41398-024-03153-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amnestic mild cognitive impairment (aMCI) is a risk factor for Alzheimer's disease (AD). Multi-domain cognitive training (CT) may slow cognitive decline and delay AD onset. However, most work involves short interventions, targeting single cognitive domains or lacking active controls. We conducted a single-blind randomized controlled trial to investigate the effect of a 6-month, multi-domain CT on Fluid Cognition, functional connectivity in memory and executive functioning networks (primary outcomes), and white matter microstructural properties (secondary outcome) in aMCI. Sixty participants were randomly assigned to either a multi-domain CT or crossword training (CW) group, and thirty-four participants completed the intervention. We found a significant group-by-time interaction in Fluid Cognition (p = 0.007, F (1,28) = 8.26, Cohen's d = 0.38, 95% confidence interval [CI]: 2.45-14.4), with 90% of CT patients showing post-intervention improvements (p < 0.01, Cohen's d = 0.7). The CT group also showed better post-intervention Fluid Cognition than healthy controls (HCs, N = 45, p = 0.045). Functional connectivity analyses showed a significant group-by-time interaction (Cohen's d ≥ 0.8) in the dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex (IPC) networks. Specifically, CT displayed post-intervention increases whereas CW displayed decreases in functional connectivity. Moreover, increased connectivity strength between the left DLPFC and medial PFC was associated with improved Fluid Cognition. At a microstructural level, we observed a decline in fiber density (FD) for both groups, but the CT group declined less steeply (1.3 vs. 2%). The slower decline in FD for the CT group in several tracts, including the cingulum-hippocampus tract, was associated with better working memory. Finally, we identified regions in cognitive control and memory networks for which baseline functional connectivity and microstructural properties were associated with changes in Fluid Cognition. Long-term, multi-domain CT improves cognitive functioning and functional connectivity and delays structural brain decline in aMCI (ClinicalTrials.gov number: NCT03883308).</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"14 1\",\"pages\":\"447\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-024-03153-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03153-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Long-term cognitive training enhances fluid cognition and brain connectivity in individuals with MCI.
Amnestic mild cognitive impairment (aMCI) is a risk factor for Alzheimer's disease (AD). Multi-domain cognitive training (CT) may slow cognitive decline and delay AD onset. However, most work involves short interventions, targeting single cognitive domains or lacking active controls. We conducted a single-blind randomized controlled trial to investigate the effect of a 6-month, multi-domain CT on Fluid Cognition, functional connectivity in memory and executive functioning networks (primary outcomes), and white matter microstructural properties (secondary outcome) in aMCI. Sixty participants were randomly assigned to either a multi-domain CT or crossword training (CW) group, and thirty-four participants completed the intervention. We found a significant group-by-time interaction in Fluid Cognition (p = 0.007, F (1,28) = 8.26, Cohen's d = 0.38, 95% confidence interval [CI]: 2.45-14.4), with 90% of CT patients showing post-intervention improvements (p < 0.01, Cohen's d = 0.7). The CT group also showed better post-intervention Fluid Cognition than healthy controls (HCs, N = 45, p = 0.045). Functional connectivity analyses showed a significant group-by-time interaction (Cohen's d ≥ 0.8) in the dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex (IPC) networks. Specifically, CT displayed post-intervention increases whereas CW displayed decreases in functional connectivity. Moreover, increased connectivity strength between the left DLPFC and medial PFC was associated with improved Fluid Cognition. At a microstructural level, we observed a decline in fiber density (FD) for both groups, but the CT group declined less steeply (1.3 vs. 2%). The slower decline in FD for the CT group in several tracts, including the cingulum-hippocampus tract, was associated with better working memory. Finally, we identified regions in cognitive control and memory networks for which baseline functional connectivity and microstructural properties were associated with changes in Fluid Cognition. Long-term, multi-domain CT improves cognitive functioning and functional connectivity and delays structural brain decline in aMCI (ClinicalTrials.gov number: NCT03883308).
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.