强化人类神经成像原理

IF 14.6 1区 医学 Q1 NEUROSCIENCES Trends in Neurosciences Pub Date : 2024-11-01 Epub Date: 2024-10-24 DOI:10.1016/j.tins.2024.09.011
Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay
{"title":"强化人类神经成像原理","authors":"Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay","doi":"10.1016/j.tins.2024.09.011","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"856-864"},"PeriodicalIF":14.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Principles of intensive human neuroimaging.\",\"authors\":\"Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay\",\"doi\":\"10.1016/j.tins.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"856-864\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.09.011\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.09.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类神经科学领域公开共享的大型功能磁共振成像(fMRI)数据集的兴起,主要集中在获取许多人的几小时数据("广度 "fMRI)或少数人的几小时数据("深度 "fMRI)。在这篇观点文章中,我们将重点介绍深度 fMRI 中的一种新兴方法,我们称之为 "密集型 "fMRI:这种方法致力于对认知现象进行广泛采样,以支持单体素水平的计算建模和大脑功能的详细研究。我们将讨论密集型 fMRI 的基本原理、权衡和实际考虑因素。我们还强调,密集型 fMRI 并不意味着简单地收集更多数据:它需要精心设计实验以实现丰富的假设空间、优化数据质量,以及战略性地策划公共资源以最大限度地扩大社区影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Principles of intensive human neuroimaging.

The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
期刊最新文献
Multiple predictions of others' actions in the human brain. Representational spaces in orbitofrontal and ventromedial prefrontal cortex: task states, values, and beyond. Interconnected neural circuits mediating social reward. An expanding repertoire of circuit mechanisms for visual prediction errors. The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1