Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay
{"title":"强化人类神经成像原理","authors":"Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay","doi":"10.1016/j.tins.2024.09.011","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"856-864"},"PeriodicalIF":14.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Principles of intensive human neuroimaging.\",\"authors\":\"Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay\",\"doi\":\"10.1016/j.tins.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"856-864\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.09.011\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.09.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.