COVID-19 传染病模型是否纳入了健康的社会决定因素?系统回顾。

IF 3.5 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH PUBLIC HEALTH REVIEWS Pub Date : 2024-10-10 eCollection Date: 2024-01-01 DOI:10.3389/phrs.2024.1607057
Ava A John-Baptiste, Marc Moulin, Zhe Li, Darren Hamilton, Gabrielle Crichlow, Daniel Eisenkraft Klein, Feben W Alemu, Lina Ghattas, Kathryn McDonald, Miqdad Asaria, Cameron Sharpe, Ekta Pandya, Nasheed Moqueet, David Champredon, Seyed M Moghadas, Lisa A Cooper, Andrew Pinto, Saverio Stranges, Margaret J Haworth-Brockman, Alison Galvani, Shehzad Ali
{"title":"COVID-19 传染病模型是否纳入了健康的社会决定因素?系统回顾。","authors":"Ava A John-Baptiste, Marc Moulin, Zhe Li, Darren Hamilton, Gabrielle Crichlow, Daniel Eisenkraft Klein, Feben W Alemu, Lina Ghattas, Kathryn McDonald, Miqdad Asaria, Cameron Sharpe, Ekta Pandya, Nasheed Moqueet, David Champredon, Seyed M Moghadas, Lisa A Cooper, Andrew Pinto, Saverio Stranges, Margaret J Haworth-Brockman, Alison Galvani, Shehzad Ali","doi":"10.3389/phrs.2024.1607057","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To identify COVID-19 infectious disease models that accounted for social determinants of health (SDH).</p><p><strong>Methods: </strong>We searched MEDLINE, EMBASE, Cochrane Library, medRxiv, and the Web of Science from December 2019 to August 2020. We included mathematical modelling studies focused on humans investigating COVID-19 impact and including at least one SDH. We abstracted study characteristics (e.g., country, model type, social determinants of health) and appraised study quality using best practices guidelines.</p><p><strong>Results: </strong>83 studies were included. Most pertained to multiple countries (n = 15), the United States (n = 12), or China (n = 7). Most models were compartmental (n = 45) and agent-based (n = 7). Age was the most incorporated SDH (n = 74), followed by gender (n = 15), race/ethnicity (n = 7) and remote/rural location (n = 6). Most models reflected the dynamic nature of infectious disease spread (n = 51, 61%) but few reported on internal (n = 10, 12%) or external (n = 31, 37%) model validation.</p><p><strong>Conclusion: </strong>Few models published early in the pandemic accounted for SDH other than age. Neglect of SDH in mathematical models of disease spread may result in foregone opportunities to understand differential impacts of the pandemic and to assess targeted interventions.</p><p><strong>Systematic review registration: </strong>[https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207706], PROSPERO, CRD42020207706.</p>","PeriodicalId":35944,"journal":{"name":"PUBLIC HEALTH REVIEWS","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Do COVID-19 Infectious Disease Models Incorporate the Social Determinants of Health? A Systematic Review.\",\"authors\":\"Ava A John-Baptiste, Marc Moulin, Zhe Li, Darren Hamilton, Gabrielle Crichlow, Daniel Eisenkraft Klein, Feben W Alemu, Lina Ghattas, Kathryn McDonald, Miqdad Asaria, Cameron Sharpe, Ekta Pandya, Nasheed Moqueet, David Champredon, Seyed M Moghadas, Lisa A Cooper, Andrew Pinto, Saverio Stranges, Margaret J Haworth-Brockman, Alison Galvani, Shehzad Ali\",\"doi\":\"10.3389/phrs.2024.1607057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To identify COVID-19 infectious disease models that accounted for social determinants of health (SDH).</p><p><strong>Methods: </strong>We searched MEDLINE, EMBASE, Cochrane Library, medRxiv, and the Web of Science from December 2019 to August 2020. We included mathematical modelling studies focused on humans investigating COVID-19 impact and including at least one SDH. We abstracted study characteristics (e.g., country, model type, social determinants of health) and appraised study quality using best practices guidelines.</p><p><strong>Results: </strong>83 studies were included. Most pertained to multiple countries (n = 15), the United States (n = 12), or China (n = 7). Most models were compartmental (n = 45) and agent-based (n = 7). Age was the most incorporated SDH (n = 74), followed by gender (n = 15), race/ethnicity (n = 7) and remote/rural location (n = 6). Most models reflected the dynamic nature of infectious disease spread (n = 51, 61%) but few reported on internal (n = 10, 12%) or external (n = 31, 37%) model validation.</p><p><strong>Conclusion: </strong>Few models published early in the pandemic accounted for SDH other than age. Neglect of SDH in mathematical models of disease spread may result in foregone opportunities to understand differential impacts of the pandemic and to assess targeted interventions.</p><p><strong>Systematic review registration: </strong>[https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207706], PROSPERO, CRD42020207706.</p>\",\"PeriodicalId\":35944,\"journal\":{\"name\":\"PUBLIC HEALTH REVIEWS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PUBLIC HEALTH REVIEWS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/phrs.2024.1607057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PUBLIC HEALTH REVIEWS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/phrs.2024.1607057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

目的确定考虑了健康的社会决定因素(SDH)的 COVID-19 传染病模型:我们检索了 2019 年 12 月至 2020 年 8 月期间的 MEDLINE、EMBASE、Cochrane Library、medRxiv 和 Web of Science。我们纳入了以人类为研究对象、调查 COVID-19 影响并包含至少一种 SDH 的数学建模研究。我们摘录了研究特征(如国家、模型类型、健康的社会决定因素),并使用最佳实践指南评估了研究质量:结果:共纳入 83 项研究。大多数研究涉及多个国家(15 项)、美国(12 项)或中国(7 项)。大多数模型是分区模型(n = 45)和基于代理的模型(n = 7)。年龄是纳入最多的 SDH(n = 74),其次是性别(n = 15)、种族/民族(n = 7)和偏远/农村地区(n = 6)。大多数模型反映了传染病传播的动态性质(n = 51,61%),但很少有报告对模型进行内部(n = 10,12%)或外部(n = 31,37%)验证:结论:大流行早期发布的模型中,除年龄外,很少有模型考虑到 SDH。在疾病传播的数学模型中忽略 SDH 可能会导致失去了解大流行的不同影响和评估有针对性的干预措施的机会:[https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207706], prospero, crd42020207706.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do COVID-19 Infectious Disease Models Incorporate the Social Determinants of Health? A Systematic Review.

Objectives: To identify COVID-19 infectious disease models that accounted for social determinants of health (SDH).

Methods: We searched MEDLINE, EMBASE, Cochrane Library, medRxiv, and the Web of Science from December 2019 to August 2020. We included mathematical modelling studies focused on humans investigating COVID-19 impact and including at least one SDH. We abstracted study characteristics (e.g., country, model type, social determinants of health) and appraised study quality using best practices guidelines.

Results: 83 studies were included. Most pertained to multiple countries (n = 15), the United States (n = 12), or China (n = 7). Most models were compartmental (n = 45) and agent-based (n = 7). Age was the most incorporated SDH (n = 74), followed by gender (n = 15), race/ethnicity (n = 7) and remote/rural location (n = 6). Most models reflected the dynamic nature of infectious disease spread (n = 51, 61%) but few reported on internal (n = 10, 12%) or external (n = 31, 37%) model validation.

Conclusion: Few models published early in the pandemic accounted for SDH other than age. Neglect of SDH in mathematical models of disease spread may result in foregone opportunities to understand differential impacts of the pandemic and to assess targeted interventions.

Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207706], PROSPERO, CRD42020207706.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PUBLIC HEALTH REVIEWS
PUBLIC HEALTH REVIEWS Nursing-Community and Home Care
CiteScore
8.30
自引率
1.80%
发文量
47
审稿时长
5 weeks
期刊最新文献
Do COVID-19 Infectious Disease Models Incorporate the Social Determinants of Health? A Systematic Review. The European Researchers' Network Working on Second Victim (ERNST) Policy Statement on the Second Victim Phenomenon for Increasing Patient Safety. The Influence of Climate, Atmospheric Pollution, and Natural Disasters on Cardiovascular Diseases and Diabetes Mellitus in Drylands: A Scoping Review Let's Be Clear-Health Impact Assessments or Assessing Health Impacts? Unraveling Herpes Zoster Vaccine Hesitancy, Acceptance, and Its Predictors: Insights From a Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1