{"title":"环境压力引起的胚胎发育形态动力学变化","authors":"Dorit Kalo, Shira Yaacobi-Artzi, Shir Manovich, Ariel Michaelov, Alisa Komsky-Elbaz, Zvi Roth","doi":"10.3390/jox14040087","DOIUrl":null,"url":null,"abstract":"<p><p>The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the parental age, lifestyle, health, and smoking habits have been reported to affect the embryo morphokinetics and, consequently, its development. However, less is known about the effect of environmental stressors on embryo morphokinetics. The current review discusses the effect of the most concerning environmental stressors on embryo morphokinetics. These stresses include heat stress and human-made chemicals such as phthalates (e.g., bis-(2-ethylhexyl phthalate, dibutyl phthalate, dimethyl phthalate, and their primary metabolites), herbicides (e.g., diaminochlorotriazine, the primary metabolite of atrazine), pharmaceutical compounds (e.g., carbamazepine, nocodazole) and pro-oxidant agents (cumene hydroperoxide, Triton X-100), as well as naturally occurring toxins such as mycotoxin (e.g., aflatoxin B1 and its metabolite, and ochratoxin A). In addition, this review discusses the effect of ionizing or non-ionizing radiation and viral infections (e.g., SARS-CoV-2, papillomavirus). Finally, it points out some potential mechanisms that underlie the impairment of embryo morphokinetics, and it suggests protective compounds, mainly the supplementation of antioxidants to improve the morphokinetics, and consequently, the embryo developmental competence.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 4","pages":"1613-1637"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Environmental Stress-Induced Alterations in Embryo Developmental Morphokinetics.\",\"authors\":\"Dorit Kalo, Shira Yaacobi-Artzi, Shir Manovich, Ariel Michaelov, Alisa Komsky-Elbaz, Zvi Roth\",\"doi\":\"10.3390/jox14040087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the parental age, lifestyle, health, and smoking habits have been reported to affect the embryo morphokinetics and, consequently, its development. However, less is known about the effect of environmental stressors on embryo morphokinetics. The current review discusses the effect of the most concerning environmental stressors on embryo morphokinetics. These stresses include heat stress and human-made chemicals such as phthalates (e.g., bis-(2-ethylhexyl phthalate, dibutyl phthalate, dimethyl phthalate, and their primary metabolites), herbicides (e.g., diaminochlorotriazine, the primary metabolite of atrazine), pharmaceutical compounds (e.g., carbamazepine, nocodazole) and pro-oxidant agents (cumene hydroperoxide, Triton X-100), as well as naturally occurring toxins such as mycotoxin (e.g., aflatoxin B1 and its metabolite, and ochratoxin A). In addition, this review discusses the effect of ionizing or non-ionizing radiation and viral infections (e.g., SARS-CoV-2, papillomavirus). Finally, it points out some potential mechanisms that underlie the impairment of embryo morphokinetics, and it suggests protective compounds, mainly the supplementation of antioxidants to improve the morphokinetics, and consequently, the embryo developmental competence.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"14 4\",\"pages\":\"1613-1637\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox14040087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14040087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Environmental Stress-Induced Alterations in Embryo Developmental Morphokinetics.
The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the parental age, lifestyle, health, and smoking habits have been reported to affect the embryo morphokinetics and, consequently, its development. However, less is known about the effect of environmental stressors on embryo morphokinetics. The current review discusses the effect of the most concerning environmental stressors on embryo morphokinetics. These stresses include heat stress and human-made chemicals such as phthalates (e.g., bis-(2-ethylhexyl phthalate, dibutyl phthalate, dimethyl phthalate, and their primary metabolites), herbicides (e.g., diaminochlorotriazine, the primary metabolite of atrazine), pharmaceutical compounds (e.g., carbamazepine, nocodazole) and pro-oxidant agents (cumene hydroperoxide, Triton X-100), as well as naturally occurring toxins such as mycotoxin (e.g., aflatoxin B1 and its metabolite, and ochratoxin A). In addition, this review discusses the effect of ionizing or non-ionizing radiation and viral infections (e.g., SARS-CoV-2, papillomavirus). Finally, it points out some potential mechanisms that underlie the impairment of embryo morphokinetics, and it suggests protective compounds, mainly the supplementation of antioxidants to improve the morphokinetics, and consequently, the embryo developmental competence.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.