Michael P. Citron , Xiaowei Zang , Andrew Leithead , Shi Meng , William A. Rose II , Edward Murray , Jane Fontenot , John P. Bilello , Douglas C. Beshore , John A. Howe
{"title":"在可转化动物模型中评估 RSV RNA 依赖性 RNA 聚合酶的非核苷类抑制剂","authors":"Michael P. Citron , Xiaowei Zang , Andrew Leithead , Shi Meng , William A. Rose II , Edward Murray , Jane Fontenot , John P. Bilello , Douglas C. Beshore , John A. Howe","doi":"10.1016/j.jinf.2024.106325","DOIUrl":null,"url":null,"abstract":"<div><div>Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.</div></div>","PeriodicalId":50180,"journal":{"name":"Journal of Infection","volume":"89 6","pages":"Article 106325"},"PeriodicalIF":14.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a non-nucleoside inhibitor of the RSV RNA-dependent RNA polymerase in translatable animal models\",\"authors\":\"Michael P. Citron , Xiaowei Zang , Andrew Leithead , Shi Meng , William A. Rose II , Edward Murray , Jane Fontenot , John P. Bilello , Douglas C. Beshore , John A. Howe\",\"doi\":\"10.1016/j.jinf.2024.106325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.</div></div>\",\"PeriodicalId\":50180,\"journal\":{\"name\":\"Journal of Infection\",\"volume\":\"89 6\",\"pages\":\"Article 106325\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0163445324002597\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163445324002597","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Evaluation of a non-nucleoside inhibitor of the RSV RNA-dependent RNA polymerase in translatable animal models
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
期刊介绍:
The Journal of Infection publishes original papers on all aspects of infection - clinical, microbiological and epidemiological. The Journal seeks to bring together knowledge from all specialties involved in infection research and clinical practice, and present the best work in the ever-changing field of infection.
Each issue brings you Editorials that describe current or controversial topics of interest, high quality Reviews to keep you in touch with the latest developments in specific fields of interest, an Epidemiology section reporting studies in the hospital and the general community, and a lively correspondence section.