Alejandro Rodríguez, Josep Gómez, Ignacio Martín-Loeches, Laura Claverias, Emili Díaz, Rafael Zaragoza, Marcio Borges-Sa, Frederic Gómez-Bertomeu, Álvaro Franquet, Sandra Trefler, Carlos González Garzón, Lissett Cortés, Florencia Alés, Susana Sancho, Jordi Solé-Violán, Ángel Estella, Julen Berrueta, Alejandro García-Martínez, Borja Suberviola, Juan J Guardiola, María Bodí
{"title":"用机器学习方法确定流感和 SARS-CoV-2 感染重症患者呼吸道细菌/真菌合并感染的风险因素:西班牙视角。","authors":"Alejandro Rodríguez, Josep Gómez, Ignacio Martín-Loeches, Laura Claverias, Emili Díaz, Rafael Zaragoza, Marcio Borges-Sa, Frederic Gómez-Bertomeu, Álvaro Franquet, Sandra Trefler, Carlos González Garzón, Lissett Cortés, Florencia Alés, Susana Sancho, Jordi Solé-Violán, Ángel Estella, Julen Berrueta, Alejandro García-Martínez, Borja Suberviola, Juan J Guardiola, María Bodí","doi":"10.3390/antibiotics13100968","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Bacterial/fungal coinfections (COIs) are associated with antibiotic overuse, poor outcomes such as prolonged ICU stay, and increased mortality. Our aim was to develop machine learning-based predictive models to identify respiratory bacterial or fungal coinfections upon ICU admission. <b>Methods</b>: We conducted a secondary analysis of two prospective multicenter cohort studies with confirmed influenza A (H1N1)pdm09 and COVID-19. Multiple logistic regression (MLR) and random forest (RF) were used to identify factors associated with BFC in the overall population and in each subgroup (influenza and COVID-19). The performance of these models was assessed by the area under the ROC curve (AUC) and out-of-bag (OOB) methods for MLR and RF, respectively. <b>Results</b>: Of the 8902 patients, 41.6% had influenza and 58.4% had SARS-CoV-2 infection. The median age was 60 years, 66% were male, and the crude ICU mortality was 25%. BFC was observed in 14.2% of patients. Overall, the predictive models showed modest performances, with an AUC of 0.68 (MLR) and OOB 36.9% (RF). Specific models did not show improved performance. However, age, procalcitonin, CRP, APACHE II, SOFA, and shock were factors associated with BFC in most models. <b>Conclusions</b>: Machine learning models do not adequately predict the presence of co-infection in critically ill patients with pandemic virus infection. However, the presence of factors such as advanced age, elevated procalcitonin or CPR, and high severity of illness should alert clinicians to the need to rule out this complication on admission to the ICU.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504409/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective.\",\"authors\":\"Alejandro Rodríguez, Josep Gómez, Ignacio Martín-Loeches, Laura Claverias, Emili Díaz, Rafael Zaragoza, Marcio Borges-Sa, Frederic Gómez-Bertomeu, Álvaro Franquet, Sandra Trefler, Carlos González Garzón, Lissett Cortés, Florencia Alés, Susana Sancho, Jordi Solé-Violán, Ángel Estella, Julen Berrueta, Alejandro García-Martínez, Borja Suberviola, Juan J Guardiola, María Bodí\",\"doi\":\"10.3390/antibiotics13100968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Bacterial/fungal coinfections (COIs) are associated with antibiotic overuse, poor outcomes such as prolonged ICU stay, and increased mortality. Our aim was to develop machine learning-based predictive models to identify respiratory bacterial or fungal coinfections upon ICU admission. <b>Methods</b>: We conducted a secondary analysis of two prospective multicenter cohort studies with confirmed influenza A (H1N1)pdm09 and COVID-19. Multiple logistic regression (MLR) and random forest (RF) were used to identify factors associated with BFC in the overall population and in each subgroup (influenza and COVID-19). The performance of these models was assessed by the area under the ROC curve (AUC) and out-of-bag (OOB) methods for MLR and RF, respectively. <b>Results</b>: Of the 8902 patients, 41.6% had influenza and 58.4% had SARS-CoV-2 infection. The median age was 60 years, 66% were male, and the crude ICU mortality was 25%. BFC was observed in 14.2% of patients. Overall, the predictive models showed modest performances, with an AUC of 0.68 (MLR) and OOB 36.9% (RF). Specific models did not show improved performance. However, age, procalcitonin, CRP, APACHE II, SOFA, and shock were factors associated with BFC in most models. <b>Conclusions</b>: Machine learning models do not adequately predict the presence of co-infection in critically ill patients with pandemic virus infection. However, the presence of factors such as advanced age, elevated procalcitonin or CPR, and high severity of illness should alert clinicians to the need to rule out this complication on admission to the ICU.</p>\",\"PeriodicalId\":54246,\"journal\":{\"name\":\"Antibiotics-Basel\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics13100968\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13100968","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective.
Background: Bacterial/fungal coinfections (COIs) are associated with antibiotic overuse, poor outcomes such as prolonged ICU stay, and increased mortality. Our aim was to develop machine learning-based predictive models to identify respiratory bacterial or fungal coinfections upon ICU admission. Methods: We conducted a secondary analysis of two prospective multicenter cohort studies with confirmed influenza A (H1N1)pdm09 and COVID-19. Multiple logistic regression (MLR) and random forest (RF) were used to identify factors associated with BFC in the overall population and in each subgroup (influenza and COVID-19). The performance of these models was assessed by the area under the ROC curve (AUC) and out-of-bag (OOB) methods for MLR and RF, respectively. Results: Of the 8902 patients, 41.6% had influenza and 58.4% had SARS-CoV-2 infection. The median age was 60 years, 66% were male, and the crude ICU mortality was 25%. BFC was observed in 14.2% of patients. Overall, the predictive models showed modest performances, with an AUC of 0.68 (MLR) and OOB 36.9% (RF). Specific models did not show improved performance. However, age, procalcitonin, CRP, APACHE II, SOFA, and shock were factors associated with BFC in most models. Conclusions: Machine learning models do not adequately predict the presence of co-infection in critically ill patients with pandemic virus infection. However, the presence of factors such as advanced age, elevated procalcitonin or CPR, and high severity of illness should alert clinicians to the need to rule out this complication on admission to the ICU.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.