通过免疫信息学方法对作为候选疫苗的弓形虫 ROP41 基因进行硅学分析和结构疫苗学预测。

IF 3.2 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Current Research in Translational Medicine Pub Date : 2024-10-16 DOI:10.1016/j.retram.2024.103475
Masoumeh Asadi , Ali Dalir Ghaffari , Fatemeh Mohammadhasani
{"title":"通过免疫信息学方法对作为候选疫苗的弓形虫 ROP41 基因进行硅学分析和结构疫苗学预测。","authors":"Masoumeh Asadi ,&nbsp;Ali Dalir Ghaffari ,&nbsp;Fatemeh Mohammadhasani","doi":"10.1016/j.retram.2024.103475","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div><em>Toxoplasma gondii</em> (<em>T. gondii</em>) infects all warm-blooded animals, including humans. Currently, no effective treatments exist to prevent the generation of chronic tissue cysts in infected hosts. Therefore, developing a vaccine to protect to deal with toxoplasmosis is a promising strategy, as a single immunization could provide lifelong protective immunity. Rhoptry proteins (ROPs) play a vital role for the parasite's survival within host cells and perform critical functions during different phases of parasite invasion. Little is known about ROP41 gene. Nevertheless, Understanding the characteristics of ROP41 will enhance diagnostic and vaccine research.</div></div><div><h3>Materials and Methods</h3><div>The current article provides a comprehensive analysis of the essential components of the ROP41 protein, including its transmembrane domain, physico-chemical properties, subcellular location, tertiary and secondary structures, and potential T- and B-cell epitopes. These features were determined by many bioinformatics approaches to identify possible epitopes for developing a highly effective vaccine.</div></div><div><h3>Results</h3><div>ROP41 protein showed 36 possible post-translational modification regions. The ROP41 protein secondary structure contains 17.35 % extended strand, 33.47 % alpha-helix, and 49.18 % random coil. Also, ROP41 showed many possible B- and T-cell epitopes. According to the Ramachandran plot, 90.78 % of amino acid residues had been placed in favored, 3.28 % in outlier, and 5.94 % in allowed areas. Also, the allergenicity and antigenicity evaluation indicated that ROP41 is non-allergenic and immunogenic.</div></div><div><h3>Conclusion</h3><div>The current study offered critical basic and conceptual information on ROP41 to increase a successful vaccine in opposition to continual and acute toxoplasmosis for in addition in vivo assessments. Further research is necessary for the development of vaccines utilizing ROP41 alone or combined with various antigens.</div></div>","PeriodicalId":54260,"journal":{"name":"Current Research in Translational Medicine","volume":"73 1","pages":"Article 103475"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico analysis and structural vaccinology prediction of Toxoplasma gondii ROP41 gene via immunoinformatics methods as a vaccine candidate\",\"authors\":\"Masoumeh Asadi ,&nbsp;Ali Dalir Ghaffari ,&nbsp;Fatemeh Mohammadhasani\",\"doi\":\"10.1016/j.retram.2024.103475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div><em>Toxoplasma gondii</em> (<em>T. gondii</em>) infects all warm-blooded animals, including humans. Currently, no effective treatments exist to prevent the generation of chronic tissue cysts in infected hosts. Therefore, developing a vaccine to protect to deal with toxoplasmosis is a promising strategy, as a single immunization could provide lifelong protective immunity. Rhoptry proteins (ROPs) play a vital role for the parasite's survival within host cells and perform critical functions during different phases of parasite invasion. Little is known about ROP41 gene. Nevertheless, Understanding the characteristics of ROP41 will enhance diagnostic and vaccine research.</div></div><div><h3>Materials and Methods</h3><div>The current article provides a comprehensive analysis of the essential components of the ROP41 protein, including its transmembrane domain, physico-chemical properties, subcellular location, tertiary and secondary structures, and potential T- and B-cell epitopes. These features were determined by many bioinformatics approaches to identify possible epitopes for developing a highly effective vaccine.</div></div><div><h3>Results</h3><div>ROP41 protein showed 36 possible post-translational modification regions. The ROP41 protein secondary structure contains 17.35 % extended strand, 33.47 % alpha-helix, and 49.18 % random coil. Also, ROP41 showed many possible B- and T-cell epitopes. According to the Ramachandran plot, 90.78 % of amino acid residues had been placed in favored, 3.28 % in outlier, and 5.94 % in allowed areas. Also, the allergenicity and antigenicity evaluation indicated that ROP41 is non-allergenic and immunogenic.</div></div><div><h3>Conclusion</h3><div>The current study offered critical basic and conceptual information on ROP41 to increase a successful vaccine in opposition to continual and acute toxoplasmosis for in addition in vivo assessments. Further research is necessary for the development of vaccines utilizing ROP41 alone or combined with various antigens.</div></div>\",\"PeriodicalId\":54260,\"journal\":{\"name\":\"Current Research in Translational Medicine\",\"volume\":\"73 1\",\"pages\":\"Article 103475\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452318624000370\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452318624000370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

导言:弓形虫(T. gondii)感染所有温血动物,包括人类。目前,还没有有效的治疗方法来预防受感染宿主体内慢性组织囊肿的产生。因此,开发一种疫苗来预防弓形虫病是一种很有前景的策略,因为一次免疫接种可提供终身保护性免疫。ROPtry蛋白(ROPs)对寄生虫在宿主细胞内的生存起着至关重要的作用,并在寄生虫入侵的不同阶段发挥关键功能。人们对 ROP41 基因知之甚少。然而,了解 ROP41 的特征将有助于诊断和疫苗研究:本文全面分析了 ROP41 蛋白的基本成分,包括其跨膜结构域、物理化学性质、亚细胞位置、三级和二级结构以及潜在的 T 细胞和 B 细胞表位。通过多种生物信息学方法确定了这些特征,以确定开发高效疫苗的可能表位:结果:ROP41蛋白显示了36个可能的翻译后修饰区域。ROP41蛋白的二级结构中,17.35%为延伸链,33.47%为α-螺旋,49.18%为随机线圈。此外,ROP41 还显示出许多可能的 B 细胞和 T 细胞表位。根据拉马钱德兰图,90.78%的氨基酸残基被置于有利区域,3.28%的氨基酸残基被置于离群区域,5.94%的氨基酸残基被置于允许区域。此外,过敏性和抗原性评估表明,ROP41 不具有过敏性和免疫原性:目前的研究提供了有关 ROP41 的重要基础和概念信息,以增加成功对抗持续性和急性弓形虫病疫苗的体内评估。有必要开展进一步研究,以开发单独使用 ROP41 或将其与各种抗原结合使用的疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico analysis and structural vaccinology prediction of Toxoplasma gondii ROP41 gene via immunoinformatics methods as a vaccine candidate

Introduction

Toxoplasma gondii (T. gondii) infects all warm-blooded animals, including humans. Currently, no effective treatments exist to prevent the generation of chronic tissue cysts in infected hosts. Therefore, developing a vaccine to protect to deal with toxoplasmosis is a promising strategy, as a single immunization could provide lifelong protective immunity. Rhoptry proteins (ROPs) play a vital role for the parasite's survival within host cells and perform critical functions during different phases of parasite invasion. Little is known about ROP41 gene. Nevertheless, Understanding the characteristics of ROP41 will enhance diagnostic and vaccine research.

Materials and Methods

The current article provides a comprehensive analysis of the essential components of the ROP41 protein, including its transmembrane domain, physico-chemical properties, subcellular location, tertiary and secondary structures, and potential T- and B-cell epitopes. These features were determined by many bioinformatics approaches to identify possible epitopes for developing a highly effective vaccine.

Results

ROP41 protein showed 36 possible post-translational modification regions. The ROP41 protein secondary structure contains 17.35 % extended strand, 33.47 % alpha-helix, and 49.18 % random coil. Also, ROP41 showed many possible B- and T-cell epitopes. According to the Ramachandran plot, 90.78 % of amino acid residues had been placed in favored, 3.28 % in outlier, and 5.94 % in allowed areas. Also, the allergenicity and antigenicity evaluation indicated that ROP41 is non-allergenic and immunogenic.

Conclusion

The current study offered critical basic and conceptual information on ROP41 to increase a successful vaccine in opposition to continual and acute toxoplasmosis for in addition in vivo assessments. Further research is necessary for the development of vaccines utilizing ROP41 alone or combined with various antigens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Translational Medicine
Current Research in Translational Medicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
7.00
自引率
4.90%
发文量
51
审稿时长
45 days
期刊介绍: Current Research in Translational Medicine is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of hematology, immunology, infectiology, hematopoietic cell transplantation, and cellular and gene therapy. The journal considers for publication English-language editorials, original articles, reviews, and short reports including case-reports. Contributions are intended to draw attention to experimental medicine and translational research. Current Research in Translational Medicine periodically publishes thematic issues and is indexed in all major international databases (2017 Impact Factor is 1.9). Core areas covered in Current Research in Translational Medicine are: Hematology, Immunology, Infectiology, Hematopoietic, Cell Transplantation, Cellular and Gene Therapy.
期刊最新文献
DNMT3A-related overgrowth syndrome presenting with immune thrombocytopenic purpura Evaluation and management of hepatic dysfunction, portal hypertension and portal/splanchnic vein thrombosis in patients with myelofibrosis undergoing allogeneic haematopoietic cell transplantation: A practice based survey on behalf of the Chronic Malignancies Working Party of the EBMT. CAR T-cell therapy combined with autologous hematopoietic cell transplantation in patients with refractory/relapsed Burkitt Lymphoma In silico analysis and structural vaccinology prediction of Toxoplasma gondii ROP41 gene via immunoinformatics methods as a vaccine candidate Effect and safety of recombinant human thrombopoietin on haematopoietic reconstitution after allogeneic haematopoietic cell transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1