{"title":"软机器人和软体:对流体软机器人结构和功能的生物学见解。","authors":"Amir Hosein Zamanian, Janice Voltzow","doi":"10.1088/1748-3190/ad8b8d","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last two decades, robotics engineering has witnessed rapid growth in the exploration and development of soft robots. Soft robots are made of deformable materials with mechanical properties or other features that resemble biological structures. These robots are often inspired by living organisms or mimic their locomotion, such as crawling and swimming. This paper aims to assist researchers in robotics and engineering to design soft robots incorporating or inspired by biological systems with a more informed perspective on biological models and functions. We address the characteristics of fluidic soft robots inspired by or mimicking biological examples, establish a method to categorize soft robots from a functional biological perspective, and provide a wider range of organisms to inspire the development of soft robotics. The actuation mechanisms in bioinspired and biomimetic soft robotics would benefit from a clearer understanding of the underlying principles, organization, and function of biological structures.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft robots and soft bodies: biological insights into the structure and function of fluidic soft robots.\",\"authors\":\"Amir Hosein Zamanian, Janice Voltzow\",\"doi\":\"10.1088/1748-3190/ad8b8d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last two decades, robotics engineering has witnessed rapid growth in the exploration and development of soft robots. Soft robots are made of deformable materials with mechanical properties or other features that resemble biological structures. These robots are often inspired by living organisms or mimic their locomotion, such as crawling and swimming. This paper aims to assist researchers in robotics and engineering to design soft robots incorporating or inspired by biological systems with a more informed perspective on biological models and functions. We address the characteristics of fluidic soft robots inspired by or mimicking biological examples, establish a method to categorize soft robots from a functional biological perspective, and provide a wider range of organisms to inspire the development of soft robotics. The actuation mechanisms in bioinspired and biomimetic soft robotics would benefit from a clearer understanding of the underlying principles, organization, and function of biological structures.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad8b8d\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad8b8d","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Soft robots and soft bodies: biological insights into the structure and function of fluidic soft robots.
Over the last two decades, robotics engineering has witnessed rapid growth in the exploration and development of soft robots. Soft robots are made of deformable materials with mechanical properties or other features that resemble biological structures. These robots are often inspired by living organisms or mimic their locomotion, such as crawling and swimming. This paper aims to assist researchers in robotics and engineering to design soft robots incorporating or inspired by biological systems with a more informed perspective on biological models and functions. We address the characteristics of fluidic soft robots inspired by or mimicking biological examples, establish a method to categorize soft robots from a functional biological perspective, and provide a wider range of organisms to inspire the development of soft robotics. The actuation mechanisms in bioinspired and biomimetic soft robotics would benefit from a clearer understanding of the underlying principles, organization, and function of biological structures.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.