T. Elizabeth Workman , Ali Ahmed , Helen M. Sheriff , Venkatesh K. Raman , Sijian Zhang , Yijun Shao , Charles Faselis , Gregg C. Fonarow , Qing Zeng-Treitler
{"title":"ChatGPT-4 从电子健康记录中提取心衰症状和体征。","authors":"T. Elizabeth Workman , Ali Ahmed , Helen M. Sheriff , Venkatesh K. Raman , Sijian Zhang , Yijun Shao , Charles Faselis , Gregg C. Fonarow , Qing Zeng-Treitler","doi":"10.1016/j.pcad.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Natural language processing (NLP) can facilitate research utilizing data from electronic health records (EHRs). Large language models can potentially improve NLP applications leveraging EHR notes. The objective of this study was to assess the performance of zero-shot learning using Chat Generative Pre-trained Transformer 4 (ChatGPT-4) for extraction of symptoms and signs, and compare its performance to baseline machine learning and rule-based methods developed using annotated data.</div></div><div><h3>Methods and results</h3><div>From unstructured clinical notes of the national EHR data of the Veterans healthcare system, we extracted 1999 text snippets containing relevant keywords for heart failure symptoms and signs, which were then annotated by two clinicians. We also created 102 synthetic snippets that were semantically similar to snippets randomly selected from the original 1999 snippets. The authors applied zero-shot learning, using two different forms of prompt engineering in a symptom and sign extraction task with ChatGPT-4, utilizing the synthetic snippets. For comparison, baseline models using machine learning and rule-based methods were trained using the original 1999 annotated text snippets, and then used to classify the 102 synthetic snippets.</div><div>The best zero-shot learning application achieved 90.6 % precision, 100 % recall, and 95 % F1 score, outperforming the best baseline method, which achieved 54.9 % precision, 82.4 % recall, and 65.5 % F1 score. Prompt style and temperature settings influenced zero-shot learning performance.</div></div><div><h3>Conclusions</h3><div>Zero-shot learning utilizing ChatGPT-4 significantly outperformed traditional machine learning and rule-based NLP. Prompt type and temperature settings affected zero-shot learning performance. These findings suggest a more efficient means of symptoms and signs extraction than traditional machine learning and rule-based methods.</div></div>","PeriodicalId":21156,"journal":{"name":"Progress in cardiovascular diseases","volume":"87 ","pages":"Pages 44-49"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChatGPT-4 extraction of heart failure symptoms and signs from electronic health records\",\"authors\":\"T. Elizabeth Workman , Ali Ahmed , Helen M. Sheriff , Venkatesh K. Raman , Sijian Zhang , Yijun Shao , Charles Faselis , Gregg C. Fonarow , Qing Zeng-Treitler\",\"doi\":\"10.1016/j.pcad.2024.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Natural language processing (NLP) can facilitate research utilizing data from electronic health records (EHRs). Large language models can potentially improve NLP applications leveraging EHR notes. The objective of this study was to assess the performance of zero-shot learning using Chat Generative Pre-trained Transformer 4 (ChatGPT-4) for extraction of symptoms and signs, and compare its performance to baseline machine learning and rule-based methods developed using annotated data.</div></div><div><h3>Methods and results</h3><div>From unstructured clinical notes of the national EHR data of the Veterans healthcare system, we extracted 1999 text snippets containing relevant keywords for heart failure symptoms and signs, which were then annotated by two clinicians. We also created 102 synthetic snippets that were semantically similar to snippets randomly selected from the original 1999 snippets. The authors applied zero-shot learning, using two different forms of prompt engineering in a symptom and sign extraction task with ChatGPT-4, utilizing the synthetic snippets. For comparison, baseline models using machine learning and rule-based methods were trained using the original 1999 annotated text snippets, and then used to classify the 102 synthetic snippets.</div><div>The best zero-shot learning application achieved 90.6 % precision, 100 % recall, and 95 % F1 score, outperforming the best baseline method, which achieved 54.9 % precision, 82.4 % recall, and 65.5 % F1 score. Prompt style and temperature settings influenced zero-shot learning performance.</div></div><div><h3>Conclusions</h3><div>Zero-shot learning utilizing ChatGPT-4 significantly outperformed traditional machine learning and rule-based NLP. Prompt type and temperature settings affected zero-shot learning performance. These findings suggest a more efficient means of symptoms and signs extraction than traditional machine learning and rule-based methods.</div></div>\",\"PeriodicalId\":21156,\"journal\":{\"name\":\"Progress in cardiovascular diseases\",\"volume\":\"87 \",\"pages\":\"Pages 44-49\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in cardiovascular diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0033062024001476\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in cardiovascular diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0033062024001476","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
ChatGPT-4 extraction of heart failure symptoms and signs from electronic health records
Background
Natural language processing (NLP) can facilitate research utilizing data from electronic health records (EHRs). Large language models can potentially improve NLP applications leveraging EHR notes. The objective of this study was to assess the performance of zero-shot learning using Chat Generative Pre-trained Transformer 4 (ChatGPT-4) for extraction of symptoms and signs, and compare its performance to baseline machine learning and rule-based methods developed using annotated data.
Methods and results
From unstructured clinical notes of the national EHR data of the Veterans healthcare system, we extracted 1999 text snippets containing relevant keywords for heart failure symptoms and signs, which were then annotated by two clinicians. We also created 102 synthetic snippets that were semantically similar to snippets randomly selected from the original 1999 snippets. The authors applied zero-shot learning, using two different forms of prompt engineering in a symptom and sign extraction task with ChatGPT-4, utilizing the synthetic snippets. For comparison, baseline models using machine learning and rule-based methods were trained using the original 1999 annotated text snippets, and then used to classify the 102 synthetic snippets.
The best zero-shot learning application achieved 90.6 % precision, 100 % recall, and 95 % F1 score, outperforming the best baseline method, which achieved 54.9 % precision, 82.4 % recall, and 65.5 % F1 score. Prompt style and temperature settings influenced zero-shot learning performance.
Conclusions
Zero-shot learning utilizing ChatGPT-4 significantly outperformed traditional machine learning and rule-based NLP. Prompt type and temperature settings affected zero-shot learning performance. These findings suggest a more efficient means of symptoms and signs extraction than traditional machine learning and rule-based methods.
期刊介绍:
Progress in Cardiovascular Diseases provides comprehensive coverage of a single topic related to heart and circulatory disorders in each issue. Some issues include special articles, definitive reviews that capture the state of the art in the management of particular clinical problems in cardiology.