Adane Nega Tarekegn, Krzysztof Michalak, Giuseppe Costa, Fulvio Ricceri, Mario Giacobini
{"title":"基于不平衡多标签分类预测与虚弱相关的多种结果","authors":"Adane Nega Tarekegn, Krzysztof Michalak, Giuseppe Costa, Fulvio Ricceri, Mario Giacobini","doi":"10.1007/s41666-024-00173-6","DOIUrl":null,"url":null,"abstract":"<p><p>Frailty syndrome is prevalent among the elderly, often linked to chronic diseases and resulting in various adverse health outcomes. Existing research has predominantly focused on predicting individual frailty-related outcomes. However, this paper takes a novel approach by framing frailty as a multi-label learning problem, aiming to predict multiple adverse outcomes simultaneously. In the context of multi-label classification, dealing with imbalanced label distribution poses inherent challenges to multi-label prediction. To address this issue, our study proposes a hybrid resampling approach tailored for handling imbalance problems in the multi-label scenario. The proposed resampling technique and prediction tasks were applied to a high-dimensional real-life medical dataset comprising individuals aged 65 years and above. Several multi-label algorithms were employed in the experiment, and their performance was evaluated using multi-label metrics. The results obtained through our proposed approach revealed that the best-performing prediction model achieved an average precision score of 83%. These findings underscore the effectiveness of our method in predicting multiple frailty outcomes from a complex and imbalanced multi-label dataset.</p>","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Multiple Outcomes Associated with Frailty based on Imbalanced Multi-label Classification.\",\"authors\":\"Adane Nega Tarekegn, Krzysztof Michalak, Giuseppe Costa, Fulvio Ricceri, Mario Giacobini\",\"doi\":\"10.1007/s41666-024-00173-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Frailty syndrome is prevalent among the elderly, often linked to chronic diseases and resulting in various adverse health outcomes. Existing research has predominantly focused on predicting individual frailty-related outcomes. However, this paper takes a novel approach by framing frailty as a multi-label learning problem, aiming to predict multiple adverse outcomes simultaneously. In the context of multi-label classification, dealing with imbalanced label distribution poses inherent challenges to multi-label prediction. To address this issue, our study proposes a hybrid resampling approach tailored for handling imbalance problems in the multi-label scenario. The proposed resampling technique and prediction tasks were applied to a high-dimensional real-life medical dataset comprising individuals aged 65 years and above. Several multi-label algorithms were employed in the experiment, and their performance was evaluated using multi-label metrics. The results obtained through our proposed approach revealed that the best-performing prediction model achieved an average precision score of 83%. These findings underscore the effectiveness of our method in predicting multiple frailty outcomes from a complex and imbalanced multi-label dataset.</p>\",\"PeriodicalId\":101413,\"journal\":{\"name\":\"Journal of healthcare informatics research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of healthcare informatics research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-024-00173-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of healthcare informatics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-024-00173-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Predicting Multiple Outcomes Associated with Frailty based on Imbalanced Multi-label Classification.
Frailty syndrome is prevalent among the elderly, often linked to chronic diseases and resulting in various adverse health outcomes. Existing research has predominantly focused on predicting individual frailty-related outcomes. However, this paper takes a novel approach by framing frailty as a multi-label learning problem, aiming to predict multiple adverse outcomes simultaneously. In the context of multi-label classification, dealing with imbalanced label distribution poses inherent challenges to multi-label prediction. To address this issue, our study proposes a hybrid resampling approach tailored for handling imbalance problems in the multi-label scenario. The proposed resampling technique and prediction tasks were applied to a high-dimensional real-life medical dataset comprising individuals aged 65 years and above. Several multi-label algorithms were employed in the experiment, and their performance was evaluated using multi-label metrics. The results obtained through our proposed approach revealed that the best-performing prediction model achieved an average precision score of 83%. These findings underscore the effectiveness of our method in predicting multiple frailty outcomes from a complex and imbalanced multi-label dataset.