基于骨架的动作识别的可分离时空图学习方法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-10-07 DOI:10.1109/LSENS.2024.3475515
Hui Zheng;Ye-Sheng Zhao;Bo Zhang;Guo-Qiang Shang
{"title":"基于骨架的动作识别的可分离时空图学习方法","authors":"Hui Zheng;Ye-Sheng Zhao;Bo Zhang;Guo-Qiang Shang","doi":"10.1109/LSENS.2024.3475515","DOIUrl":null,"url":null,"abstract":"With the popularization of sensors and the development of pose estimation algorithms, a skeleton-based action recognition task has gradually become mainstream in human action recognition tasks. The key to solving skeleton-based action recognition task is to extract feature representations that can accurately outline the characteristics of human actions from sensor data. In this letter, we propose a separable spatial-temporal graph learning approach, which is composed of independent spatial and temporal graph networks. In the spatial graph network, spectral-based graph convolutional network is selected to mine spatial features of each moment. In the temporal graph network, a global-local attention mechanism is embedded to excavate interdependence at different times. Extensive experiments are carried out on the NTU-RGB+D and NTU-RGB+D 120 datasets, and the results show that our proposed method outperforms several other baselines.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Separable Spatial–Temporal Graph Learning Approach for Skeleton-Based Action Recognition\",\"authors\":\"Hui Zheng;Ye-Sheng Zhao;Bo Zhang;Guo-Qiang Shang\",\"doi\":\"10.1109/LSENS.2024.3475515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularization of sensors and the development of pose estimation algorithms, a skeleton-based action recognition task has gradually become mainstream in human action recognition tasks. The key to solving skeleton-based action recognition task is to extract feature representations that can accurately outline the characteristics of human actions from sensor data. In this letter, we propose a separable spatial-temporal graph learning approach, which is composed of independent spatial and temporal graph networks. In the spatial graph network, spectral-based graph convolutional network is selected to mine spatial features of each moment. In the temporal graph network, a global-local attention mechanism is embedded to excavate interdependence at different times. Extensive experiments are carried out on the NTU-RGB+D and NTU-RGB+D 120 datasets, and the results show that our proposed method outperforms several other baselines.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 11\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706715/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706715/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着传感器的普及和姿势估计算法的发展,基于骨骼的动作识别任务逐渐成为人类动作识别任务的主流。解决基于骨架的动作识别任务的关键在于从传感器数据中提取能够准确勾勒出人类动作特征的特征表征。在这封信中,我们提出了一种可分离的空间-时间图学习方法,它由独立的空间图网络和时间图网络组成。在空间图网络中,选择基于光谱的图卷积网络来挖掘每个时刻的空间特征。在时间图网络中,嵌入了全局-局部关注机制,以挖掘不同时间的相互依赖性。我们在 NTU-RGB+D 和 NTU-RGB+D 120 数据集上进行了广泛的实验,结果表明我们提出的方法优于其他几种基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Separable Spatial–Temporal Graph Learning Approach for Skeleton-Based Action Recognition
With the popularization of sensors and the development of pose estimation algorithms, a skeleton-based action recognition task has gradually become mainstream in human action recognition tasks. The key to solving skeleton-based action recognition task is to extract feature representations that can accurately outline the characteristics of human actions from sensor data. In this letter, we propose a separable spatial-temporal graph learning approach, which is composed of independent spatial and temporal graph networks. In the spatial graph network, spectral-based graph convolutional network is selected to mine spatial features of each moment. In the temporal graph network, a global-local attention mechanism is embedded to excavate interdependence at different times. Extensive experiments are carried out on the NTU-RGB+D and NTU-RGB+D 120 datasets, and the results show that our proposed method outperforms several other baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1