{"title":"在某些扩展二进制 BCH 码中构建最小权码的高效算法","authors":"Amit Berman;Yaron Shany;Itzhak Tamo","doi":"10.1109/TIT.2024.3465218","DOIUrl":null,"url":null,"abstract":"We present \n<inline-formula> <tex-math>$O(m^{3})$ </tex-math></inline-formula>\n algorithms for specifying the support of minimum-weight codewords of extended binary BCH codes of length \n<inline-formula> <tex-math>$n=2^{m}$ </tex-math></inline-formula>\n and designed distance \n<inline-formula> <tex-math>$d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$ </tex-math></inline-formula>\n for some values of \n<inline-formula> <tex-math>$m,i,s$ </tex-math></inline-formula>\n, where m may grow to infinity. Here, the support is specified as the sum of two sets: a set of \n<inline-formula> <tex-math>$2^{2i-1}-2^{i-1}$ </tex-math></inline-formula>\n elements, and a subspace of dimension \n<inline-formula> <tex-math>$m-2i-s$ </tex-math></inline-formula>\n, specified by a basis. In some detail, for designed distance \n<inline-formula> <tex-math>$6\\cdot 2^{j}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$j\\in \\{0,\\ldots ,m-4\\}$ </tex-math></inline-formula>\n, we have a deterministic algorithm for even \n<inline-formula> <tex-math>$m\\geq 4$ </tex-math></inline-formula>\n, and a probabilistic algorithm with success probability \n<inline-formula> <tex-math>$1-O(2^{-m})$ </tex-math></inline-formula>\n for odd \n<inline-formula> <tex-math>$m\\gt 4$ </tex-math></inline-formula>\n. For designed distance \n<inline-formula> <tex-math>$28\\cdot 2^{j}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$j\\in \\{0,\\ldots , m-6\\}$ </tex-math></inline-formula>\n, we have a probabilistic algorithm with success probability \n<inline-formula> <tex-math>$\\geq \\frac {1}{3}-O(2^{-m/2})$ </tex-math></inline-formula>\n for even \n<inline-formula> <tex-math>$m\\geq 6$ </tex-math></inline-formula>\n. Finally, for designed distance \n<inline-formula> <tex-math>$120\\cdot 2^{j}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$j\\in \\{0,\\ldots , m-8\\}$ </tex-math></inline-formula>\n, we have a deterministic algorithm for \n<inline-formula> <tex-math>$m\\geq 8$ </tex-math></inline-formula>\n divisible by 4. We also show how Gold functions can be used to find the support of minimum-weight words for designed distance \n<inline-formula> <tex-math>$d(m,s,i)$ </tex-math></inline-formula>\n (for \n<inline-formula> <tex-math>$i\\in \\{0,\\ldots ,\\lfloor m/2\\rfloor \\}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$s\\leq m-2i$ </tex-math></inline-formula>\n) whenever \n<inline-formula> <tex-math>$2i|m$ </tex-math></inline-formula>\n. Our construction builds on results of Kasami and Lin, who proved that for extended binary BCH codes of designed distance \n<inline-formula> <tex-math>$d(m,s,i)$ </tex-math></inline-formula>\n (for integers \n<inline-formula> <tex-math>$m\\geq 2$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$0\\leq i\\leq \\lfloor m/2\\rfloor $ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$0\\leq s\\leq m-2i$ </tex-math></inline-formula>\n), the minimum distance equals the designed distance. The proof of Kasami and Lin makes use of a non-constructive existence result of Berlekamp, and a constructive “down-conversion theorem” that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive counting argument of Berlekamp by a low-complexity algorithm. In one aspect, the current paper extends the results of Grigorescu and Kaufman, who presented explicit minimum-weight codewords for extended binary BCH codes of designed distance exactly 6 (and hence also for designed distance \n<inline-formula> <tex-math>$6\\cdot 2^{j}$ </tex-math></inline-formula>\n, by a well-known “up-conversion theorem”), as we cover more cases of the minimum distance. In fact, we prove that the codeword constructed by Grigorescu and Kaufman is a special case of the current construction. However, the minimum-weight codewords we construct do not generate the code, and are not affine generators, except, possibly, for a designed distance of 6.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7673-7689"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Algorithms for Constructing Minimum-Weight Codewords in Some Extended Binary BCH Codes\",\"authors\":\"Amit Berman;Yaron Shany;Itzhak Tamo\",\"doi\":\"10.1109/TIT.2024.3465218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present \\n<inline-formula> <tex-math>$O(m^{3})$ </tex-math></inline-formula>\\n algorithms for specifying the support of minimum-weight codewords of extended binary BCH codes of length \\n<inline-formula> <tex-math>$n=2^{m}$ </tex-math></inline-formula>\\n and designed distance \\n<inline-formula> <tex-math>$d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$ </tex-math></inline-formula>\\n for some values of \\n<inline-formula> <tex-math>$m,i,s$ </tex-math></inline-formula>\\n, where m may grow to infinity. Here, the support is specified as the sum of two sets: a set of \\n<inline-formula> <tex-math>$2^{2i-1}-2^{i-1}$ </tex-math></inline-formula>\\n elements, and a subspace of dimension \\n<inline-formula> <tex-math>$m-2i-s$ </tex-math></inline-formula>\\n, specified by a basis. In some detail, for designed distance \\n<inline-formula> <tex-math>$6\\\\cdot 2^{j}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$j\\\\in \\\\{0,\\\\ldots ,m-4\\\\}$ </tex-math></inline-formula>\\n, we have a deterministic algorithm for even \\n<inline-formula> <tex-math>$m\\\\geq 4$ </tex-math></inline-formula>\\n, and a probabilistic algorithm with success probability \\n<inline-formula> <tex-math>$1-O(2^{-m})$ </tex-math></inline-formula>\\n for odd \\n<inline-formula> <tex-math>$m\\\\gt 4$ </tex-math></inline-formula>\\n. For designed distance \\n<inline-formula> <tex-math>$28\\\\cdot 2^{j}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$j\\\\in \\\\{0,\\\\ldots , m-6\\\\}$ </tex-math></inline-formula>\\n, we have a probabilistic algorithm with success probability \\n<inline-formula> <tex-math>$\\\\geq \\\\frac {1}{3}-O(2^{-m/2})$ </tex-math></inline-formula>\\n for even \\n<inline-formula> <tex-math>$m\\\\geq 6$ </tex-math></inline-formula>\\n. Finally, for designed distance \\n<inline-formula> <tex-math>$120\\\\cdot 2^{j}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$j\\\\in \\\\{0,\\\\ldots , m-8\\\\}$ </tex-math></inline-formula>\\n, we have a deterministic algorithm for \\n<inline-formula> <tex-math>$m\\\\geq 8$ </tex-math></inline-formula>\\n divisible by 4. We also show how Gold functions can be used to find the support of minimum-weight words for designed distance \\n<inline-formula> <tex-math>$d(m,s,i)$ </tex-math></inline-formula>\\n (for \\n<inline-formula> <tex-math>$i\\\\in \\\\{0,\\\\ldots ,\\\\lfloor m/2\\\\rfloor \\\\}$ </tex-math></inline-formula>\\n, and \\n<inline-formula> <tex-math>$s\\\\leq m-2i$ </tex-math></inline-formula>\\n) whenever \\n<inline-formula> <tex-math>$2i|m$ </tex-math></inline-formula>\\n. Our construction builds on results of Kasami and Lin, who proved that for extended binary BCH codes of designed distance \\n<inline-formula> <tex-math>$d(m,s,i)$ </tex-math></inline-formula>\\n (for integers \\n<inline-formula> <tex-math>$m\\\\geq 2$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$0\\\\leq i\\\\leq \\\\lfloor m/2\\\\rfloor $ </tex-math></inline-formula>\\n, and \\n<inline-formula> <tex-math>$0\\\\leq s\\\\leq m-2i$ </tex-math></inline-formula>\\n), the minimum distance equals the designed distance. The proof of Kasami and Lin makes use of a non-constructive existence result of Berlekamp, and a constructive “down-conversion theorem” that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive counting argument of Berlekamp by a low-complexity algorithm. In one aspect, the current paper extends the results of Grigorescu and Kaufman, who presented explicit minimum-weight codewords for extended binary BCH codes of designed distance exactly 6 (and hence also for designed distance \\n<inline-formula> <tex-math>$6\\\\cdot 2^{j}$ </tex-math></inline-formula>\\n, by a well-known “up-conversion theorem”), as we cover more cases of the minimum distance. In fact, we prove that the codeword constructed by Grigorescu and Kaufman is a special case of the current construction. However, the minimum-weight codewords we construct do not generate the code, and are not affine generators, except, possibly, for a designed distance of 6.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 11\",\"pages\":\"7673-7689\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684736/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684736/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Efficient Algorithms for Constructing Minimum-Weight Codewords in Some Extended Binary BCH Codes
We present
$O(m^{3})$
algorithms for specifying the support of minimum-weight codewords of extended binary BCH codes of length
$n=2^{m}$
and designed distance
$d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$
for some values of
$m,i,s$
, where m may grow to infinity. Here, the support is specified as the sum of two sets: a set of
$2^{2i-1}-2^{i-1}$
elements, and a subspace of dimension
$m-2i-s$
, specified by a basis. In some detail, for designed distance
$6\cdot 2^{j}$
,
$j\in \{0,\ldots ,m-4\}$
, we have a deterministic algorithm for even
$m\geq 4$
, and a probabilistic algorithm with success probability
$1-O(2^{-m})$
for odd
$m\gt 4$
. For designed distance
$28\cdot 2^{j}$
,
$j\in \{0,\ldots , m-6\}$
, we have a probabilistic algorithm with success probability
$\geq \frac {1}{3}-O(2^{-m/2})$
for even
$m\geq 6$
. Finally, for designed distance
$120\cdot 2^{j}$
,
$j\in \{0,\ldots , m-8\}$
, we have a deterministic algorithm for
$m\geq 8$
divisible by 4. We also show how Gold functions can be used to find the support of minimum-weight words for designed distance
$d(m,s,i)$
(for
$i\in \{0,\ldots ,\lfloor m/2\rfloor \}$
, and
$s\leq m-2i$
) whenever
$2i|m$
. Our construction builds on results of Kasami and Lin, who proved that for extended binary BCH codes of designed distance
$d(m,s,i)$
(for integers
$m\geq 2$
,
$0\leq i\leq \lfloor m/2\rfloor $
, and
$0\leq s\leq m-2i$
), the minimum distance equals the designed distance. The proof of Kasami and Lin makes use of a non-constructive existence result of Berlekamp, and a constructive “down-conversion theorem” that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive counting argument of Berlekamp by a low-complexity algorithm. In one aspect, the current paper extends the results of Grigorescu and Kaufman, who presented explicit minimum-weight codewords for extended binary BCH codes of designed distance exactly 6 (and hence also for designed distance
$6\cdot 2^{j}$
, by a well-known “up-conversion theorem”), as we cover more cases of the minimum distance. In fact, we prove that the codeword constructed by Grigorescu and Kaufman is a special case of the current construction. However, the minimum-weight codewords we construct do not generate the code, and are not affine generators, except, possibly, for a designed distance of 6.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.