Nadir Adam;Mansoor Ali;Faisal Naeem;Abdallah S. Ghazy;Georges Kaddoum
{"title":"水下物联网的最新安全方案:全面调查","authors":"Nadir Adam;Mansoor Ali;Faisal Naeem;Abdallah S. Ghazy;Georges Kaddoum","doi":"10.1109/OJCOMS.2024.3474290","DOIUrl":null,"url":null,"abstract":"With the growing interest that is being shown in marine resources, the concept of the Internet of Things (IoT) has been extended to underwater scenarios, which has given rise to the Internet of Underwater Things (IoUT). The IoUT encompasses a network of interconnected intelligent underwater devices that can be used to monitor underwater environments and support various applications, such as underwater exploration, disaster prevention, and environmental monitoring. Advances in underwater wireless communication and sensor technologies have propelled the IoUT concept forward. However, the IoUT faces significant challenges. The harsh and vast underwater environment makes information sensing particularly difficult and leads to insufficient or inaccurate data being collected. Additionally, underwater conditions like pressure variation, hydrological characteristics, temperature changes, water currents, and topography hinder conventional communication models and make data transmission difficult and inefficient. Security in IoUT networks is a critical concern due to hardware limitations and seawater channel imperfections. Constrained sensor nodes and spatial-temporal uncertainty introduced by node mobility further complicate security provisioning. This survey paper addresses these challenges by offering a comprehensive overview of IoUT security. The investigation thoroughly examines both traditional and classic machine learning techniques and focuses on deploying advanced technologies such as federated learning and digital twin. The study effectively addresses integration challenges and open issues and provides a roadmap for future directions to play a pivotal role in formulating robust security mechanisms for IoUT networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705129","citationCount":"0","resultStr":"{\"title\":\"State-of-the-Art Security Schemes for the Internet of Underwater Things: A Holistic Survey\",\"authors\":\"Nadir Adam;Mansoor Ali;Faisal Naeem;Abdallah S. Ghazy;Georges Kaddoum\",\"doi\":\"10.1109/OJCOMS.2024.3474290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing interest that is being shown in marine resources, the concept of the Internet of Things (IoT) has been extended to underwater scenarios, which has given rise to the Internet of Underwater Things (IoUT). The IoUT encompasses a network of interconnected intelligent underwater devices that can be used to monitor underwater environments and support various applications, such as underwater exploration, disaster prevention, and environmental monitoring. Advances in underwater wireless communication and sensor technologies have propelled the IoUT concept forward. However, the IoUT faces significant challenges. The harsh and vast underwater environment makes information sensing particularly difficult and leads to insufficient or inaccurate data being collected. Additionally, underwater conditions like pressure variation, hydrological characteristics, temperature changes, water currents, and topography hinder conventional communication models and make data transmission difficult and inefficient. Security in IoUT networks is a critical concern due to hardware limitations and seawater channel imperfections. Constrained sensor nodes and spatial-temporal uncertainty introduced by node mobility further complicate security provisioning. This survey paper addresses these challenges by offering a comprehensive overview of IoUT security. The investigation thoroughly examines both traditional and classic machine learning techniques and focuses on deploying advanced technologies such as federated learning and digital twin. The study effectively addresses integration challenges and open issues and provides a roadmap for future directions to play a pivotal role in formulating robust security mechanisms for IoUT networks.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705129/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10705129/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
State-of-the-Art Security Schemes for the Internet of Underwater Things: A Holistic Survey
With the growing interest that is being shown in marine resources, the concept of the Internet of Things (IoT) has been extended to underwater scenarios, which has given rise to the Internet of Underwater Things (IoUT). The IoUT encompasses a network of interconnected intelligent underwater devices that can be used to monitor underwater environments and support various applications, such as underwater exploration, disaster prevention, and environmental monitoring. Advances in underwater wireless communication and sensor technologies have propelled the IoUT concept forward. However, the IoUT faces significant challenges. The harsh and vast underwater environment makes information sensing particularly difficult and leads to insufficient or inaccurate data being collected. Additionally, underwater conditions like pressure variation, hydrological characteristics, temperature changes, water currents, and topography hinder conventional communication models and make data transmission difficult and inefficient. Security in IoUT networks is a critical concern due to hardware limitations and seawater channel imperfections. Constrained sensor nodes and spatial-temporal uncertainty introduced by node mobility further complicate security provisioning. This survey paper addresses these challenges by offering a comprehensive overview of IoUT security. The investigation thoroughly examines both traditional and classic machine learning techniques and focuses on deploying advanced technologies such as federated learning and digital twin. The study effectively addresses integration challenges and open issues and provides a roadmap for future directions to play a pivotal role in formulating robust security mechanisms for IoUT networks.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.