利用电流体动力喷射打印技术实现高性能微模硅晶体管的自适应互连

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-09-20 DOI:10.1109/TED.2024.3457907
Hubert N. Elly;Kaifan Yue;Rebecca K. Banner;Siddharth Kurup;Daniel Aziz;Saksham Malik;Kira L. Barton;Michael A. Filler;Eric M. Vogel
{"title":"利用电流体动力喷射打印技术实现高性能微模硅晶体管的自适应互连","authors":"Hubert N. Elly;Kaifan Yue;Rebecca K. Banner;Siddharth Kurup;Daniel Aziz;Saksham Malik;Kira L. Barton;Michael A. Filler;Eric M. Vogel","doi":"10.1109/TED.2024.3457907","DOIUrl":null,"url":null,"abstract":"Micromodular n-channel metal-oxide-silicon transistors were fabricated, transferred to a foreign substrate, and adaptively interconnected using high-resolution electrohydrodynamic jet (e-jet) printed metal wires to create depletion-load nMOS inverters. The transferred transistors have effective electron mobilities approaching 500 cm\n<inline-formula> <tex-math>$^{{2}} \\cdot $ </tex-math></inline-formula>\n V\n<inline-formula> <tex-math>$^{-{1}} \\cdot $ </tex-math></inline-formula>\n s−1 and subthreshold swing as low as 82 mV/decade, while the nMOS inverters have gains close to 30. Detailed electrical characterization shows that e-jet printing does not impact transistor performance. Moreover, e-jet printing can accommodate variations in transistor placement, opening the door to systems that can correct manufacturing errors in real-time. This work sets the stage for on-demand microelectronics manufacturing with extreme customizability at the transistor level.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"7149-7155"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Interconnection of High-Performance Micromodular Silicon Transistors Using Electrohydrodynamic Jet Printing\",\"authors\":\"Hubert N. Elly;Kaifan Yue;Rebecca K. Banner;Siddharth Kurup;Daniel Aziz;Saksham Malik;Kira L. Barton;Michael A. Filler;Eric M. Vogel\",\"doi\":\"10.1109/TED.2024.3457907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micromodular n-channel metal-oxide-silicon transistors were fabricated, transferred to a foreign substrate, and adaptively interconnected using high-resolution electrohydrodynamic jet (e-jet) printed metal wires to create depletion-load nMOS inverters. The transferred transistors have effective electron mobilities approaching 500 cm\\n<inline-formula> <tex-math>$^{{2}} \\\\cdot $ </tex-math></inline-formula>\\n V\\n<inline-formula> <tex-math>$^{-{1}} \\\\cdot $ </tex-math></inline-formula>\\n s−1 and subthreshold swing as low as 82 mV/decade, while the nMOS inverters have gains close to 30. Detailed electrical characterization shows that e-jet printing does not impact transistor performance. Moreover, e-jet printing can accommodate variations in transistor placement, opening the door to systems that can correct manufacturing errors in real-time. This work sets the stage for on-demand microelectronics manufacturing with extreme customizability at the transistor level.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 11\",\"pages\":\"7149-7155\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684980/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684980/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用高分辨率电流体动力喷射(e-jet)印刷金属线制造了微型 n 沟道金属氧化物硅晶体管,并将其转移到外来衬底上进行自适应互连,从而创建了耗尽负载 nMOS 逆变器。转移的晶体管具有接近 500 cm $^{{2}} 的有效电子迁移率。\cdot $ V $^{-{1}}\s-1 和低至 82 mV/decade 的阈下摆动,而 nMOS 逆变器的增益接近 30。详细的电气特性分析表明,电子喷射打印不会影响晶体管的性能。此外,电子喷射打印还能适应晶体管位置的变化,为实时纠正制造错误的系统打开了大门。这项工作为按需微电子制造奠定了基础,可在晶体管层面实现极高的定制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Interconnection of High-Performance Micromodular Silicon Transistors Using Electrohydrodynamic Jet Printing
Micromodular n-channel metal-oxide-silicon transistors were fabricated, transferred to a foreign substrate, and adaptively interconnected using high-resolution electrohydrodynamic jet (e-jet) printed metal wires to create depletion-load nMOS inverters. The transferred transistors have effective electron mobilities approaching 500 cm $^{{2}} \cdot $ V $^{-{1}} \cdot $ s−1 and subthreshold swing as low as 82 mV/decade, while the nMOS inverters have gains close to 30. Detailed electrical characterization shows that e-jet printing does not impact transistor performance. Moreover, e-jet printing can accommodate variations in transistor placement, opening the door to systems that can correct manufacturing errors in real-time. This work sets the stage for on-demand microelectronics manufacturing with extreme customizability at the transistor level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1