操纵 BCD 技术中低压 pMOS 器件的带间隧道电流:TCAD 和实验研究

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-10-04 DOI:10.1109/TED.2024.3466842
Guglielmo Albani;Elena Rebussi;Emanuele D’Ambrosio;Annalisa Gilardini;Alessandra Manca;Pietro Miccichè;Daria Doria;Pierpaolo Monge;Elia Sora;Silvia Vangelista;Emanuele Viganò
{"title":"操纵 BCD 技术中低压 pMOS 器件的带间隧道电流:TCAD 和实验研究","authors":"Guglielmo Albani;Elena Rebussi;Emanuele D’Ambrosio;Annalisa Gilardini;Alessandra Manca;Pietro Miccichè;Daria Doria;Pierpaolo Monge;Elia Sora;Silvia Vangelista;Emanuele Viganò","doi":"10.1109/TED.2024.3466842","DOIUrl":null,"url":null,"abstract":"This study investigates the issue of reducing band-to-band leakage current in low-voltage (LV) CMOS devices realized using BCD technology. Through TCAD simulations and comprehensive experimental characterization, the influence of key process parameters on leakage current in this category of devices is examined. The presented findings suggest that band-to-band tunneling (B2B) can be significantly mitigated by carefully selecting the rapid thermal processing (RTP) annealing temperature. Subsequently, we address the side effects of the modification of the process parameter on the electrical performance of the devices, aiming to recover affected electrical figures of merit through precise adjustments to the process working point. The study shows that this goal can be reached by a proper modification of the p+ implant energy. In the end, a statistical analysis is presented, with the purpose of understanding the impact of these process changes on the distribution of defects. This research not only proposes a method to tackle the well-known issue of B2B current but also provides valuable insight into the steps required to achieve substantial enhancements in the electrical performance of components by fine-tuning BCD process parameters.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"6927-6933"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating Band-to-Band Tunneling Current in Low-Voltage pMOS Devices in BCD Technology: A TCAD and Experimental Investigation\",\"authors\":\"Guglielmo Albani;Elena Rebussi;Emanuele D’Ambrosio;Annalisa Gilardini;Alessandra Manca;Pietro Miccichè;Daria Doria;Pierpaolo Monge;Elia Sora;Silvia Vangelista;Emanuele Viganò\",\"doi\":\"10.1109/TED.2024.3466842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the issue of reducing band-to-band leakage current in low-voltage (LV) CMOS devices realized using BCD technology. Through TCAD simulations and comprehensive experimental characterization, the influence of key process parameters on leakage current in this category of devices is examined. The presented findings suggest that band-to-band tunneling (B2B) can be significantly mitigated by carefully selecting the rapid thermal processing (RTP) annealing temperature. Subsequently, we address the side effects of the modification of the process parameter on the electrical performance of the devices, aiming to recover affected electrical figures of merit through precise adjustments to the process working point. The study shows that this goal can be reached by a proper modification of the p+ implant energy. In the end, a statistical analysis is presented, with the purpose of understanding the impact of these process changes on the distribution of defects. This research not only proposes a method to tackle the well-known issue of B2B current but also provides valuable insight into the steps required to achieve substantial enhancements in the electrical performance of components by fine-tuning BCD process parameters.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 11\",\"pages\":\"6927-6933\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705111/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705111/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何降低使用 BCD 技术实现的低电压 (LV) CMOS 器件的带间漏电流。通过 TCAD 仿真和综合实验表征,研究了关键工艺参数对此类器件漏电流的影响。研究结果表明,通过仔细选择快速热处理 (RTP) 退火温度,可以显著减轻带间隧道效应 (B2B)。随后,我们讨论了修改工艺参数对器件电气性能的副作用,旨在通过精确调整工艺工作点来恢复受影响的电气性能指标。研究表明,通过适当调整 p+ 植入能量,可以实现这一目标。最后,还进行了统计分析,目的是了解这些工艺变化对缺陷分布的影响。这项研究不仅提出了解决众所周知的 B2B 电流问题的方法,而且还提供了有价值的见解,让我们了解通过微调 BCD 工艺参数来大幅提高元件电气性能所需的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manipulating Band-to-Band Tunneling Current in Low-Voltage pMOS Devices in BCD Technology: A TCAD and Experimental Investigation
This study investigates the issue of reducing band-to-band leakage current in low-voltage (LV) CMOS devices realized using BCD technology. Through TCAD simulations and comprehensive experimental characterization, the influence of key process parameters on leakage current in this category of devices is examined. The presented findings suggest that band-to-band tunneling (B2B) can be significantly mitigated by carefully selecting the rapid thermal processing (RTP) annealing temperature. Subsequently, we address the side effects of the modification of the process parameter on the electrical performance of the devices, aiming to recover affected electrical figures of merit through precise adjustments to the process working point. The study shows that this goal can be reached by a proper modification of the p+ implant energy. In the end, a statistical analysis is presented, with the purpose of understanding the impact of these process changes on the distribution of defects. This research not only proposes a method to tackle the well-known issue of B2B current but also provides valuable insight into the steps required to achieve substantial enhancements in the electrical performance of components by fine-tuning BCD process parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1