采用侧向多导铁电薄膜晶体管的全电调制异质同步器

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-09-24 DOI:10.1109/TED.2024.3456775
Peng Yang;Hui Xu;Shihao Yu;Yang Liu;Bing Song;Haijun Liu;Sen Liu;Qingjiang Li
{"title":"采用侧向多导铁电薄膜晶体管的全电调制异质同步器","authors":"Peng Yang;Hui Xu;Shihao Yu;Yang Liu;Bing Song;Haijun Liu;Sen Liu;Qingjiang Li","doi":"10.1109/TED.2024.3456775","DOIUrl":null,"url":null,"abstract":"In the human brain, astrocytes modulate synaptic activities by either enhancing or inhibiting neurotransmitter transmission. It is crucial to develop and simulate this hetero-synaptic function in neuromorphic computing. This research presents a pioneering fully electrically modulated lateral multigate ferroelectric thin film transistor (FeTFT) device that integrates pre-synaptic neurons (Gate-1),postsynaptic neurons, and additional modulated gate terminals (Gate-2), which can efficiently simulate astrocyte function in biological synapses. In addition, it allows a dynamic modulation range of more than tenfold, with a remarkably low power consumption of 150 fJ per spike. The lateral multigate FeTFT surpasses competing designs with its integrability and bidirectional modulation capability based on full electrical modulation, multigate extensibility, high energy efficiency, and compatibility with CMOS technology. In summary, this conceptual innovation is proposed to facilitate to enable the realization of comprehensive and complicated synaptic behaviors, paving a new path for high-efficiency neuromorphic computing hardware systems.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"7138-7143"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Electrically Modulated Hetero-Synapses With Lateral Multigate Ferroelectric Thin Film Transistor\",\"authors\":\"Peng Yang;Hui Xu;Shihao Yu;Yang Liu;Bing Song;Haijun Liu;Sen Liu;Qingjiang Li\",\"doi\":\"10.1109/TED.2024.3456775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the human brain, astrocytes modulate synaptic activities by either enhancing or inhibiting neurotransmitter transmission. It is crucial to develop and simulate this hetero-synaptic function in neuromorphic computing. This research presents a pioneering fully electrically modulated lateral multigate ferroelectric thin film transistor (FeTFT) device that integrates pre-synaptic neurons (Gate-1),postsynaptic neurons, and additional modulated gate terminals (Gate-2), which can efficiently simulate astrocyte function in biological synapses. In addition, it allows a dynamic modulation range of more than tenfold, with a remarkably low power consumption of 150 fJ per spike. The lateral multigate FeTFT surpasses competing designs with its integrability and bidirectional modulation capability based on full electrical modulation, multigate extensibility, high energy efficiency, and compatibility with CMOS technology. In summary, this conceptual innovation is proposed to facilitate to enable the realization of comprehensive and complicated synaptic behaviors, paving a new path for high-efficiency neuromorphic computing hardware systems.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 11\",\"pages\":\"7138-7143\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10691924/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10691924/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在人脑中,星形胶质细胞通过增强或抑制神经递质传递来调节突触活动。在神经形态计算中开发和模拟这种异质突触功能至关重要。这项研究提出了一种开创性的全电调制横向多栅铁电薄膜晶体管(FeTFT)器件,它集成了突触前神经元(栅极-1)、突触后神经元和额外的调制栅极终端(栅极-2),可以有效地模拟生物突触中的星形胶质细胞功能。此外,它还能实现十倍以上的动态调制范围,而且功耗极低,每个尖峰仅需 150 fJ。横向多igate FeTFT 在全电调制、多igate 可扩展性、高能效以及与 CMOS 技术兼容的基础上,以其可集成性和双向调制能力超越了其他竞争设计。总之,这一概念创新有助于实现全面而复杂的突触行为,为高效神经形态计算硬件系统铺平了一条新路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully Electrically Modulated Hetero-Synapses With Lateral Multigate Ferroelectric Thin Film Transistor
In the human brain, astrocytes modulate synaptic activities by either enhancing or inhibiting neurotransmitter transmission. It is crucial to develop and simulate this hetero-synaptic function in neuromorphic computing. This research presents a pioneering fully electrically modulated lateral multigate ferroelectric thin film transistor (FeTFT) device that integrates pre-synaptic neurons (Gate-1),postsynaptic neurons, and additional modulated gate terminals (Gate-2), which can efficiently simulate astrocyte function in biological synapses. In addition, it allows a dynamic modulation range of more than tenfold, with a remarkably low power consumption of 150 fJ per spike. The lateral multigate FeTFT surpasses competing designs with its integrability and bidirectional modulation capability based on full electrical modulation, multigate extensibility, high energy efficiency, and compatibility with CMOS technology. In summary, this conceptual innovation is proposed to facilitate to enable the realization of comprehensive and complicated synaptic behaviors, paving a new path for high-efficiency neuromorphic computing hardware systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1