{"title":"采用二氧化硅涂层氧化锌纳米粒子掺杂 PVA 的高灵敏度光纤湿度传感器","authors":"Manish Singh Negi;Sunil Mohan","doi":"10.1109/LPT.2024.3480313","DOIUrl":null,"url":null,"abstract":"This letter describes the development and characterization of an optical fiber humidity sensor employing intensity modulation via evanescent wave (EW) absorption technique. For the development of the sensor, humidity-sensitive SiO2-coated ZnO nanoparticle doped PVA film was synthesized over the centrally decladded plastic cladding silica (PCS) fiber. In order to achieve optimal response, rigorous experimental investigations were conducted by varying the film thickness and composition. The optimized sensing probe demonstrated a linear response over 45.5-94.4% RH, with a linear sensitivity of 0.0137RH−1 (47.6mV/%RH). The response and recovery times were observed to be 1s and 1.25s during humidification and dehumidification, respectively. Additionally, the proposed sensor demonstrates a very high degree of repeatability, reversibility, and stability.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 23","pages":"1389-1392"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive Optical Fiber Humidity Sensor Employing SiO2 Coated ZnO Nanoparticle Doped PVA\",\"authors\":\"Manish Singh Negi;Sunil Mohan\",\"doi\":\"10.1109/LPT.2024.3480313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter describes the development and characterization of an optical fiber humidity sensor employing intensity modulation via evanescent wave (EW) absorption technique. For the development of the sensor, humidity-sensitive SiO2-coated ZnO nanoparticle doped PVA film was synthesized over the centrally decladded plastic cladding silica (PCS) fiber. In order to achieve optimal response, rigorous experimental investigations were conducted by varying the film thickness and composition. The optimized sensing probe demonstrated a linear response over 45.5-94.4% RH, with a linear sensitivity of 0.0137RH−1 (47.6mV/%RH). The response and recovery times were observed to be 1s and 1.25s during humidification and dehumidification, respectively. Additionally, the proposed sensor demonstrates a very high degree of repeatability, reversibility, and stability.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 23\",\"pages\":\"1389-1392\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10716677/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10716677/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
This letter describes the development and characterization of an optical fiber humidity sensor employing intensity modulation via evanescent wave (EW) absorption technique. For the development of the sensor, humidity-sensitive SiO2-coated ZnO nanoparticle doped PVA film was synthesized over the centrally decladded plastic cladding silica (PCS) fiber. In order to achieve optimal response, rigorous experimental investigations were conducted by varying the film thickness and composition. The optimized sensing probe demonstrated a linear response over 45.5-94.4% RH, with a linear sensitivity of 0.0137RH−1 (47.6mV/%RH). The response and recovery times were observed to be 1s and 1.25s during humidification and dehumidification, respectively. Additionally, the proposed sensor demonstrates a very high degree of repeatability, reversibility, and stability.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.