{"title":"新一代空间飞行器中的液体推进剂荡浮特性及抑制方法","authors":"Peng-fei Guo, Zi-an Wang, Rui Shi, Yang Yang, Hui-fang Huo, Chengxi Zhang","doi":"10.1007/s42401-024-00317-x","DOIUrl":null,"url":null,"abstract":"<div><p>Given the complex flight mission and structural characteristics of special-shaped tanks in new-generation space vehicles, this study investigates the sloshing characteristics and suppression methods of liquid propellant. Initially, the numerical calculation and structural suppression approaches for liquid propellant periodic sloshing are introduced. Subsequently, a new equivalent dynamic analysis approach based on the Volume of Fluid (VOF) method is presented and validated to simulate liquid sloshing and determine dynamic characteristic parameters such as sloshing mass, frequency, and damping ratio. Furthermore, anti-sloshing baffles are designed for sloshing suppression, and the influence of baffle height on sloshing frequency and damping ratio is examined. These significant findings provide crucial references and foundations for enhancing the flight stability and reliability of the attitude control system in new-generation space vehicles.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 4","pages":"791 - 799"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-024-00317-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Liquid propellant sloshing characteristics and suppression in new-generation space vehicle\",\"authors\":\"Peng-fei Guo, Zi-an Wang, Rui Shi, Yang Yang, Hui-fang Huo, Chengxi Zhang\",\"doi\":\"10.1007/s42401-024-00317-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the complex flight mission and structural characteristics of special-shaped tanks in new-generation space vehicles, this study investigates the sloshing characteristics and suppression methods of liquid propellant. Initially, the numerical calculation and structural suppression approaches for liquid propellant periodic sloshing are introduced. Subsequently, a new equivalent dynamic analysis approach based on the Volume of Fluid (VOF) method is presented and validated to simulate liquid sloshing and determine dynamic characteristic parameters such as sloshing mass, frequency, and damping ratio. Furthermore, anti-sloshing baffles are designed for sloshing suppression, and the influence of baffle height on sloshing frequency and damping ratio is examined. These significant findings provide crucial references and foundations for enhancing the flight stability and reliability of the attitude control system in new-generation space vehicles.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 4\",\"pages\":\"791 - 799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42401-024-00317-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00317-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00317-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Liquid propellant sloshing characteristics and suppression in new-generation space vehicle
Given the complex flight mission and structural characteristics of special-shaped tanks in new-generation space vehicles, this study investigates the sloshing characteristics and suppression methods of liquid propellant. Initially, the numerical calculation and structural suppression approaches for liquid propellant periodic sloshing are introduced. Subsequently, a new equivalent dynamic analysis approach based on the Volume of Fluid (VOF) method is presented and validated to simulate liquid sloshing and determine dynamic characteristic parameters such as sloshing mass, frequency, and damping ratio. Furthermore, anti-sloshing baffles are designed for sloshing suppression, and the influence of baffle height on sloshing frequency and damping ratio is examined. These significant findings provide crucial references and foundations for enhancing the flight stability and reliability of the attitude control system in new-generation space vehicles.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion