Ya. O. Rudakov, V. F. Selemenev, A. M. Khorokhordin, A. A. Volkov
{"title":"测定工业产品和食品中游离双酚 A 的色谱法","authors":"Ya. O. Rudakov, V. F. Selemenev, A. M. Khorokhordin, A. A. Volkov","doi":"10.1134/S1061934824700746","DOIUrl":null,"url":null,"abstract":"<p>A brief overview of chromatographic methods for determining free bisphenol A (<b>BPA</b>) in technical and food products is presented. Bisphenol A is used as a monomer in the production of some plastics and epoxy resins. The concentration of free BPA may exceed the permissible level in food plastic containers and in food products packaged in these containers. The maximum permissible concentration of BPA in water, in water bodies of domestic and drinking water and in cultural and household water use is 0.1 mg/dm<sup>3</sup>. In European countries, the migration value of BPA for plastics in contact with food products is 0.6 mg/kg. Gas chromatography with preliminary derivatization by the silylation or acylation of the analyte is most often used to determine BPA in plastics, food products, and biological fluids. Direct determination methods have been developed using gas-liquid chromatography on heat-resistant columns. Flame ionization, fluorometric, and mass-selective detectors are used as detection devices. HPLC with optical and mass-selective detectors is used to determine BPA. Thin-layer chromatography has also been used for determining BPA. Solid-phase extraction, liquid−liquid extraction, dispersive liquid−liquid microextraction, and a combined extraction method with separation in acetonitrile (QuEChERS) are used in BPA sample preparation.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"79 10","pages":"1387 - 1393"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatographic Methods for Determining Free Bisphenol A in Technical and Food Products\",\"authors\":\"Ya. O. Rudakov, V. F. Selemenev, A. M. Khorokhordin, A. A. Volkov\",\"doi\":\"10.1134/S1061934824700746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A brief overview of chromatographic methods for determining free bisphenol A (<b>BPA</b>) in technical and food products is presented. Bisphenol A is used as a monomer in the production of some plastics and epoxy resins. The concentration of free BPA may exceed the permissible level in food plastic containers and in food products packaged in these containers. The maximum permissible concentration of BPA in water, in water bodies of domestic and drinking water and in cultural and household water use is 0.1 mg/dm<sup>3</sup>. In European countries, the migration value of BPA for plastics in contact with food products is 0.6 mg/kg. Gas chromatography with preliminary derivatization by the silylation or acylation of the analyte is most often used to determine BPA in plastics, food products, and biological fluids. Direct determination methods have been developed using gas-liquid chromatography on heat-resistant columns. Flame ionization, fluorometric, and mass-selective detectors are used as detection devices. HPLC with optical and mass-selective detectors is used to determine BPA. Thin-layer chromatography has also been used for determining BPA. Solid-phase extraction, liquid−liquid extraction, dispersive liquid−liquid microextraction, and a combined extraction method with separation in acetonitrile (QuEChERS) are used in BPA sample preparation.</p>\",\"PeriodicalId\":606,\"journal\":{\"name\":\"Journal of Analytical Chemistry\",\"volume\":\"79 10\",\"pages\":\"1387 - 1393\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061934824700746\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700746","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文简要介绍了测定工业和食品中游离双酚 A (BPA) 的色谱法。双酚 A 是生产某些塑料和环氧树脂的单体。在食品塑料容器和用这些容器包装的食品中,游离双酚 A 的浓度可能会超过允许的水平。双酚 A 在水、生活和饮用水水体以及文化和家庭用水中的最大允许浓度为 0.1 mg/dm3。在欧洲国家,与食品接触的塑料中的双酚 A 迁移值为 0.6 毫克/千克。测定塑料、食品和生物液体中的双酚 A 最常用的方法是气相色谱法,并通过分析物的硅烷化或酰化进行初步衍生。目前已开发出使用耐热色谱柱进行气液色谱分析的直接测定方法。检测设备包括火焰离子化检测器、荧光检测器和质量选择检测器。HPLC 配有光学和质量选择检测器,可用于测定双酚 A。薄层色谱法也可用于测定双酚 A。固相萃取、液液萃取、分散液液微萃取以及在乙腈中分离的组合萃取法(QuEChERS)可用于双酚 A 样品的制备。
Chromatographic Methods for Determining Free Bisphenol A in Technical and Food Products
A brief overview of chromatographic methods for determining free bisphenol A (BPA) in technical and food products is presented. Bisphenol A is used as a monomer in the production of some plastics and epoxy resins. The concentration of free BPA may exceed the permissible level in food plastic containers and in food products packaged in these containers. The maximum permissible concentration of BPA in water, in water bodies of domestic and drinking water and in cultural and household water use is 0.1 mg/dm3. In European countries, the migration value of BPA for plastics in contact with food products is 0.6 mg/kg. Gas chromatography with preliminary derivatization by the silylation or acylation of the analyte is most often used to determine BPA in plastics, food products, and biological fluids. Direct determination methods have been developed using gas-liquid chromatography on heat-resistant columns. Flame ionization, fluorometric, and mass-selective detectors are used as detection devices. HPLC with optical and mass-selective detectors is used to determine BPA. Thin-layer chromatography has also been used for determining BPA. Solid-phase extraction, liquid−liquid extraction, dispersive liquid−liquid microextraction, and a combined extraction method with separation in acetonitrile (QuEChERS) are used in BPA sample preparation.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.