改善焦炭蓄电池室壁的传热性能

IF 0.4 Q4 ENGINEERING, CHEMICAL Coke and Chemistry Pub Date : 2024-10-23 DOI:10.3103/S1068364X24600659
V. V. Zinov’eva, M. S. Luchkin, M. V. Shishanov, A. Yu. Naletov
{"title":"改善焦炭蓄电池室壁的传热性能","authors":"V. V. Zinov’eva,&nbsp;M. S. Luchkin,&nbsp;M. V. Shishanov,&nbsp;A. Yu. Naletov","doi":"10.3103/S1068364X24600659","DOIUrl":null,"url":null,"abstract":"<div><p>The radiant capacity of triatomic gases such as H<sub>2</sub>O and CO<sub>2</sub> is investigated as a function of the density and thickness of the gas layer (the radiant path length). It is established that, when the path length is short, the radiant capacity of carbon dioxide predominates; when it is long, the radiant capacity of water vapor predominates. Assessment of the radiant heat-transfer coefficients in heating ducts, for the example of coke battery chambers at Moskoks, indicates that the heat-transfer of water vapor makes the greatest contribution. It increases with increase in content of water vapor in the combustion products of coke oven gas. Computer experiments confirm that supplying superheated steam (around 5 vol % of the air flux) to the combustion zone increases the radiant heat-transfer coefficients from 91.2 to 106.0 W/m<sup>2</sup> K. That intensifies coking, with simultaneous decrease in the generation of nitrogen oxides. (This technique is sometimes known as green steam injection.)</p></div>","PeriodicalId":519,"journal":{"name":"Coke and Chemistry","volume":"67 7","pages":"378 - 382"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement in Heat Transfer at Coke Battery Chamber Walls\",\"authors\":\"V. V. Zinov’eva,&nbsp;M. S. Luchkin,&nbsp;M. V. Shishanov,&nbsp;A. Yu. Naletov\",\"doi\":\"10.3103/S1068364X24600659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The radiant capacity of triatomic gases such as H<sub>2</sub>O and CO<sub>2</sub> is investigated as a function of the density and thickness of the gas layer (the radiant path length). It is established that, when the path length is short, the radiant capacity of carbon dioxide predominates; when it is long, the radiant capacity of water vapor predominates. Assessment of the radiant heat-transfer coefficients in heating ducts, for the example of coke battery chambers at Moskoks, indicates that the heat-transfer of water vapor makes the greatest contribution. It increases with increase in content of water vapor in the combustion products of coke oven gas. Computer experiments confirm that supplying superheated steam (around 5 vol % of the air flux) to the combustion zone increases the radiant heat-transfer coefficients from 91.2 to 106.0 W/m<sup>2</sup> K. That intensifies coking, with simultaneous decrease in the generation of nitrogen oxides. (This technique is sometimes known as green steam injection.)</p></div>\",\"PeriodicalId\":519,\"journal\":{\"name\":\"Coke and Chemistry\",\"volume\":\"67 7\",\"pages\":\"378 - 382\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coke and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068364X24600659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coke and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068364X24600659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了 H2O 和 CO2 等三原子气体的辐射能力与气层密度和厚度(辐射路径长度)的函数关系。结果表明,当路径长度较短时,二氧化碳的辐射能力占主导地位;当路径长度较长时,水蒸气的辐射能力占主导地位。以 Moskoks 的焦炭电池室为例,对加热管中的辐射传热系数进行的评估表明,水蒸气的传热作用最大。它随着焦炉煤气燃烧产物中水蒸气含量的增加而增加。计算机实验证实,向燃烧区提供过热蒸汽(约占空气流量的 5%)可将辐射传热系数从 91.2 W/m2 K 提高到 106.0 W/m2 K。(这种技术有时被称为绿色蒸汽喷射)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement in Heat Transfer at Coke Battery Chamber Walls

The radiant capacity of triatomic gases such as H2O and CO2 is investigated as a function of the density and thickness of the gas layer (the radiant path length). It is established that, when the path length is short, the radiant capacity of carbon dioxide predominates; when it is long, the radiant capacity of water vapor predominates. Assessment of the radiant heat-transfer coefficients in heating ducts, for the example of coke battery chambers at Moskoks, indicates that the heat-transfer of water vapor makes the greatest contribution. It increases with increase in content of water vapor in the combustion products of coke oven gas. Computer experiments confirm that supplying superheated steam (around 5 vol % of the air flux) to the combustion zone increases the radiant heat-transfer coefficients from 91.2 to 106.0 W/m2 K. That intensifies coking, with simultaneous decrease in the generation of nitrogen oxides. (This technique is sometimes known as green steam injection.)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coke and Chemistry
Coke and Chemistry ENGINEERING, CHEMICAL-
CiteScore
0.70
自引率
50.00%
发文量
36
期刊介绍: The journal publishes scientific developments and applications in the field of coal beneficiation and preparation for coking, coking processes, design of coking ovens and equipment, by-product recovery, automation of technological processes, ecology and economics. It also presents indispensable information on the scientific events devoted to thermal rectification, use of smokeless coal as an energy source, and manufacture of different liquid and solid chemical products.
期刊最新文献
Influence of the Pyrolytic Temperature on the Carbon Structure of the α Fraction from Coal Tar Pitch: EPR and NMR Spectroscopy Using Anthracene Oil from Coal Tar in the Thermal Solvolysis of Polymers Modernization of Coke Production at Magnitogorsk Iron and Steel Works (MMK) Improvement in Heat Transfer at Coke Battery Chamber Walls Surface State of Purolate Standard Activated Carbon after Sorption of Minerals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1