Jinxiu Guo, Tao Kong, Huaijie Zhang, Runtian Ma, Zijun Ma, Bing Hu
{"title":"基于富勒酸保护的金纳米粒子的孔雀石绿比色测定法","authors":"Jinxiu Guo, Tao Kong, Huaijie Zhang, Runtian Ma, Zijun Ma, Bing Hu","doi":"10.1007/s11696-024-03704-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of rapid and sensitive malachite green (MG) detection methods is particularly important for food safety supervision and ecological protection. Using fulvic acid (FA) as a stabilizer and NaBH<sub>4</sub> as a reducing agent, ellipsoidal gold nanoparticles (AuNPs) with the average particle size of 5–20 nm were successfully prepared. Based on the interaction between fulvic acid protected gold nanoparticles (FA-AuNPs) and MG, the color change of FA-AuNPs from ruby red to blue was observed, the corresponding absorbance ratio change of gold nanoparticles at 611 nm and 529 nm (A611/A529) was also studied. Through the optimization of experimental conditions, the linear relationship between A611/A529 with the concentration of MG was established. The detection limit and linear range of this method were 0.02 μM and 0.04–2 μM, respectively. This method was successfully applied to detect malachite green in three different water samples with the recovery of 97.4–110.8%.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 16","pages":"8731 - 8738"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colorimetric determination of malachite green based on gold nanoparticles protected by fulvic acid\",\"authors\":\"Jinxiu Guo, Tao Kong, Huaijie Zhang, Runtian Ma, Zijun Ma, Bing Hu\",\"doi\":\"10.1007/s11696-024-03704-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of rapid and sensitive malachite green (MG) detection methods is particularly important for food safety supervision and ecological protection. Using fulvic acid (FA) as a stabilizer and NaBH<sub>4</sub> as a reducing agent, ellipsoidal gold nanoparticles (AuNPs) with the average particle size of 5–20 nm were successfully prepared. Based on the interaction between fulvic acid protected gold nanoparticles (FA-AuNPs) and MG, the color change of FA-AuNPs from ruby red to blue was observed, the corresponding absorbance ratio change of gold nanoparticles at 611 nm and 529 nm (A611/A529) was also studied. Through the optimization of experimental conditions, the linear relationship between A611/A529 with the concentration of MG was established. The detection limit and linear range of this method were 0.02 μM and 0.04–2 μM, respectively. This method was successfully applied to detect malachite green in three different water samples with the recovery of 97.4–110.8%.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"78 16\",\"pages\":\"8731 - 8738\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-024-03704-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03704-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Colorimetric determination of malachite green based on gold nanoparticles protected by fulvic acid
The development of rapid and sensitive malachite green (MG) detection methods is particularly important for food safety supervision and ecological protection. Using fulvic acid (FA) as a stabilizer and NaBH4 as a reducing agent, ellipsoidal gold nanoparticles (AuNPs) with the average particle size of 5–20 nm were successfully prepared. Based on the interaction between fulvic acid protected gold nanoparticles (FA-AuNPs) and MG, the color change of FA-AuNPs from ruby red to blue was observed, the corresponding absorbance ratio change of gold nanoparticles at 611 nm and 529 nm (A611/A529) was also studied. Through the optimization of experimental conditions, the linear relationship between A611/A529 with the concentration of MG was established. The detection limit and linear range of this method were 0.02 μM and 0.04–2 μM, respectively. This method was successfully applied to detect malachite green in three different water samples with the recovery of 97.4–110.8%.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.