Fatouh Ibrahim, Mostafa Khalil, Mahmoud Y. M. Ahmed, M. Youssef
{"title":"俯仰频率对超音速鳍式稳定导弹稳定性标准影响的研究","authors":"Fatouh Ibrahim, Mostafa Khalil, Mahmoud Y. M. Ahmed, M. Youssef","doi":"10.1007/s42401-024-00307-z","DOIUrl":null,"url":null,"abstract":"<div><p>The stability criteria of any fin-stabilized flying object are a decisive metric in evaluating its overall performance and results in mission success. Flight stability depends on many parameters such as body configuration, the center of gravity location, atmospheric conditions, and flight manoeuvres. These manoeuvres are needed for better target interception especially for moving targets located at short ranges, resulting in high frequencies either in pitch or yaw directions. This study examines the impact of body pitch frequency on the stability of a supersonic fin-stabilized object. Time-dependent numerical simulations are implemented to model the unsteady flow field induced by a simple harmonic motion in the case study missile. The missile’s tail section dominates the lift force generated compared to the forebody, resulting in a downstream shift of the missile’s center of pressure and, consequently, an increase in the static stability margin as the pitching frequency increases. However, pitch-damp aerodynamic derivatives remain unchanged at various pitching frequencies, indicating frequency independence. The validity of the results is confirmed compared with wind tunnel data.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 4","pages":"763 - 770"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of pitching frequency impact on stability criteria for supersonic fin stabilized missile\",\"authors\":\"Fatouh Ibrahim, Mostafa Khalil, Mahmoud Y. M. Ahmed, M. Youssef\",\"doi\":\"10.1007/s42401-024-00307-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stability criteria of any fin-stabilized flying object are a decisive metric in evaluating its overall performance and results in mission success. Flight stability depends on many parameters such as body configuration, the center of gravity location, atmospheric conditions, and flight manoeuvres. These manoeuvres are needed for better target interception especially for moving targets located at short ranges, resulting in high frequencies either in pitch or yaw directions. This study examines the impact of body pitch frequency on the stability of a supersonic fin-stabilized object. Time-dependent numerical simulations are implemented to model the unsteady flow field induced by a simple harmonic motion in the case study missile. The missile’s tail section dominates the lift force generated compared to the forebody, resulting in a downstream shift of the missile’s center of pressure and, consequently, an increase in the static stability margin as the pitching frequency increases. However, pitch-damp aerodynamic derivatives remain unchanged at various pitching frequencies, indicating frequency independence. The validity of the results is confirmed compared with wind tunnel data.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 4\",\"pages\":\"763 - 770\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00307-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00307-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Investigation of pitching frequency impact on stability criteria for supersonic fin stabilized missile
The stability criteria of any fin-stabilized flying object are a decisive metric in evaluating its overall performance and results in mission success. Flight stability depends on many parameters such as body configuration, the center of gravity location, atmospheric conditions, and flight manoeuvres. These manoeuvres are needed for better target interception especially for moving targets located at short ranges, resulting in high frequencies either in pitch or yaw directions. This study examines the impact of body pitch frequency on the stability of a supersonic fin-stabilized object. Time-dependent numerical simulations are implemented to model the unsteady flow field induced by a simple harmonic motion in the case study missile. The missile’s tail section dominates the lift force generated compared to the forebody, resulting in a downstream shift of the missile’s center of pressure and, consequently, an increase in the static stability margin as the pitching frequency increases. However, pitch-damp aerodynamic derivatives remain unchanged at various pitching frequencies, indicating frequency independence. The validity of the results is confirmed compared with wind tunnel data.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion