通过参数槽重塑 1.5 级轴流式涡轮机的转子毂以减少压力损失

IF 0.9 Q4 ENERGY & FUELS Thermal Engineering Pub Date : 2024-10-27 DOI:10.1134/S0040601524700356
Hayder M. B. Obaida,  Aldo Rona
{"title":"通过参数槽重塑 1.5 级轴流式涡轮机的转子毂以减少压力损失","authors":"Hayder M. B. Obaida,&nbsp; Aldo Rona","doi":"10.1134/S0040601524700356","DOIUrl":null,"url":null,"abstract":"<p>The interaction among the vortices that develop over an axial turbine passage hub leads to pressure losses and, consequently, to a decrease in the stage isentropic efficiency. The turbine performs better if flow separation and secondary flows are reduced. To achieve this, this paper explores by computational fluid dynamics the application of rotor hub contouring to a one-and-a-half-stage axial turbine, the “Aachen Turbine.” The pressure side arm of the rotor horseshoe vortex is guided by a groove in the end-wall rotor hub surface, which is defined parametrically using non-uniform rational B-splines (NURBS). This novel rotor hub groove runs from the leading edge of the rotor blade to the trilling edge of the rotor blade. A three-dimensional steady Reynolds Averaged Navier–Stokes (RANS) <i>k</i>–ω-SST model of the one-and-half-stage turbine with axisymmetric end-walls is validated against reference experimental measurement from the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen in Germany. By contouring the hub of the upstream stator and of the rotor, the overall pressure loss coefficient predicted by openFOAM computational fluid dynamics is reduced by 5.2%, using Kriging optimized groove shape parameters.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 10","pages":"828 - 839"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reshaping the Rotor Hub of a 1.5-stage Axial Turbine to Reduce Pressure Losses by a Parametric Groove\",\"authors\":\"Hayder M. B. Obaida,&nbsp; Aldo Rona\",\"doi\":\"10.1134/S0040601524700356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interaction among the vortices that develop over an axial turbine passage hub leads to pressure losses and, consequently, to a decrease in the stage isentropic efficiency. The turbine performs better if flow separation and secondary flows are reduced. To achieve this, this paper explores by computational fluid dynamics the application of rotor hub contouring to a one-and-a-half-stage axial turbine, the “Aachen Turbine.” The pressure side arm of the rotor horseshoe vortex is guided by a groove in the end-wall rotor hub surface, which is defined parametrically using non-uniform rational B-splines (NURBS). This novel rotor hub groove runs from the leading edge of the rotor blade to the trilling edge of the rotor blade. A three-dimensional steady Reynolds Averaged Navier–Stokes (RANS) <i>k</i>–ω-SST model of the one-and-half-stage turbine with axisymmetric end-walls is validated against reference experimental measurement from the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen in Germany. By contouring the hub of the upstream stator and of the rotor, the overall pressure loss coefficient predicted by openFOAM computational fluid dynamics is reduced by 5.2%, using Kriging optimized groove shape parameters.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 10\",\"pages\":\"828 - 839\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在轴流式涡轮机轮毂上形成的涡流之间的相互作用会导致压力损失,进而降低级等熵效率。如果能减少流体分离和二次流,涡轮机的性能就会更好。为了实现这一目标,本文通过计算流体动力学探讨了转子轮毂轮廓在单级半轴流式涡轮机 "亚琛涡轮机 "中的应用。转子马蹄涡旋的压力侧臂由转子轮毂端壁表面的凹槽引导,凹槽采用非均匀有理 B 样条(NURBS)参数定义。这种新颖的转子轮毂凹槽从转子叶片的前缘一直延伸到转子叶片的后缘。根据德国亚琛工业大学喷气推进和透平机械研究所的参考实验测量结果,对带有轴对称端壁的一级半涡轮机的三维稳定雷诺平均纳维-斯托克斯(RANS)k-ω-SST 模型进行了验证。通过对上游定子和转子的轮毂进行轮廓处理,使用克里金优化槽形参数,openFOAM 计算流体动力学预测的整体压力损失系数降低了 5.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reshaping the Rotor Hub of a 1.5-stage Axial Turbine to Reduce Pressure Losses by a Parametric Groove

The interaction among the vortices that develop over an axial turbine passage hub leads to pressure losses and, consequently, to a decrease in the stage isentropic efficiency. The turbine performs better if flow separation and secondary flows are reduced. To achieve this, this paper explores by computational fluid dynamics the application of rotor hub contouring to a one-and-a-half-stage axial turbine, the “Aachen Turbine.” The pressure side arm of the rotor horseshoe vortex is guided by a groove in the end-wall rotor hub surface, which is defined parametrically using non-uniform rational B-splines (NURBS). This novel rotor hub groove runs from the leading edge of the rotor blade to the trilling edge of the rotor blade. A three-dimensional steady Reynolds Averaged Navier–Stokes (RANS) k–ω-SST model of the one-and-half-stage turbine with axisymmetric end-walls is validated against reference experimental measurement from the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen in Germany. By contouring the hub of the upstream stator and of the rotor, the overall pressure loss coefficient predicted by openFOAM computational fluid dynamics is reduced by 5.2%, using Kriging optimized groove shape parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
期刊最新文献
Implementation Results for the Technology of Comprehensive Purification of Fire-Resistant Oils Numerical Model of a Heterogeneous Pyrolysis Reactor of Methane Carbon Dioxide Absorption by Microalgae: Analysis of Technologies and Energy Costs Design Calculation and Shaping of the Hydro-Steam Turbine Flow Path with Helical Nozzles Heat Exchange Inside a Horizontal Pipe at the Initial Section with Complete Condensation of R142b Freon Vapor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1