Mehdi Salih Shihab, Nasreen Raheem Jber, Mariam Sadoon Mohsin
{"title":"评估铵盐衍生物在酸性溶液中对低碳钢腐蚀抑制实验的理论研究","authors":"Mehdi Salih Shihab, Nasreen Raheem Jber, Mariam Sadoon Mohsin","doi":"10.1134/S2070205124701673","DOIUrl":null,"url":null,"abstract":"<p>Some new organic triethylammonium salts, with names: triethylammonium 4-((4-(aminomethyl)phenyl)amino)-4-oxobut-2-enoate (B4); triethylammonium5-((4-(aminomethyl)phenyl)amino)-5-oxopentanoate (B5); and triethylammonium 4-((4-(aminomethyl)phenyl)amino)-4-oxobutanoate (B6) were synthesized and identified successfully. They were applied as corrosion organic inhibitors for mild steel in acidic environment. The new organic triethylammonium salts were tested in 1M sulfuric acid for 24 h at room temperature by applying the weight loss measurements. The high efficiency of inhibition values of all triethylammonium salts (B4, B5 & B6) were revealed at the maximum organic triethylammonium salts concentrations. The decreasing of corrosion rates of mild steel were associated with increasing the concentration of organic inhibitors (B4-B6), as well as, the increasing with coverage surface degree. The adsorption free energy values were explained the effects of physisorption for organic salts (B4, B5, and B6). The correlation between experimental results and theoretical data was considered via semi-empirical molecular orbital calculations for the three studied inhibitors. Theoretical calculations were used to understand the nature of interaction among organic corrosion inhibitor molecules and the metal surface of the mild steel.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"60 2","pages":"320 - 332"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study to Evaluate Experimental Corrosion Inhibition of Ammonium Salt Derivatives for Mild Steel in Acidic Solution\",\"authors\":\"Mehdi Salih Shihab, Nasreen Raheem Jber, Mariam Sadoon Mohsin\",\"doi\":\"10.1134/S2070205124701673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Some new organic triethylammonium salts, with names: triethylammonium 4-((4-(aminomethyl)phenyl)amino)-4-oxobut-2-enoate (B4); triethylammonium5-((4-(aminomethyl)phenyl)amino)-5-oxopentanoate (B5); and triethylammonium 4-((4-(aminomethyl)phenyl)amino)-4-oxobutanoate (B6) were synthesized and identified successfully. They were applied as corrosion organic inhibitors for mild steel in acidic environment. The new organic triethylammonium salts were tested in 1M sulfuric acid for 24 h at room temperature by applying the weight loss measurements. The high efficiency of inhibition values of all triethylammonium salts (B4, B5 & B6) were revealed at the maximum organic triethylammonium salts concentrations. The decreasing of corrosion rates of mild steel were associated with increasing the concentration of organic inhibitors (B4-B6), as well as, the increasing with coverage surface degree. The adsorption free energy values were explained the effects of physisorption for organic salts (B4, B5, and B6). The correlation between experimental results and theoretical data was considered via semi-empirical molecular orbital calculations for the three studied inhibitors. Theoretical calculations were used to understand the nature of interaction among organic corrosion inhibitor molecules and the metal surface of the mild steel.</p>\",\"PeriodicalId\":745,\"journal\":{\"name\":\"Protection of Metals and Physical Chemistry of Surfaces\",\"volume\":\"60 2\",\"pages\":\"320 - 332\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protection of Metals and Physical Chemistry of Surfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070205124701673\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205124701673","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Theoretical Study to Evaluate Experimental Corrosion Inhibition of Ammonium Salt Derivatives for Mild Steel in Acidic Solution
Some new organic triethylammonium salts, with names: triethylammonium 4-((4-(aminomethyl)phenyl)amino)-4-oxobut-2-enoate (B4); triethylammonium5-((4-(aminomethyl)phenyl)amino)-5-oxopentanoate (B5); and triethylammonium 4-((4-(aminomethyl)phenyl)amino)-4-oxobutanoate (B6) were synthesized and identified successfully. They were applied as corrosion organic inhibitors for mild steel in acidic environment. The new organic triethylammonium salts were tested in 1M sulfuric acid for 24 h at room temperature by applying the weight loss measurements. The high efficiency of inhibition values of all triethylammonium salts (B4, B5 & B6) were revealed at the maximum organic triethylammonium salts concentrations. The decreasing of corrosion rates of mild steel were associated with increasing the concentration of organic inhibitors (B4-B6), as well as, the increasing with coverage surface degree. The adsorption free energy values were explained the effects of physisorption for organic salts (B4, B5, and B6). The correlation between experimental results and theoretical data was considered via semi-empirical molecular orbital calculations for the three studied inhibitors. Theoretical calculations were used to understand the nature of interaction among organic corrosion inhibitor molecules and the metal surface of the mild steel.
期刊介绍:
Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.